Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan 17;30(4):737-44.
doi: 10.1016/j.vaccine.2011.11.080. Epub 2011 Nov 30.

Saponin-based adjuvants create a highly effective anti-tumor vaccine when combined with in situ tumor destruction

Affiliations

Saponin-based adjuvants create a highly effective anti-tumor vaccine when combined with in situ tumor destruction

Martijn H den Brok et al. Vaccine. .

Abstract

Today's most commonly used microbial vaccines are essentially composed of antigenic elements and a non-microbial adjuvant, and induce solid amounts of antibodies. Cancer vaccines mostly aim to induce anti-tumor CTL-responses, which require cross-presentation of tumor-derived antigens by dendritic cells (DCs). Adjuvants that improve DC function and antigen cross-presentation are therefore advantageous for inducing anti-tumor immunity. Previously, we have reported that in situ tumor destruction of established murine tumors by ablation efficiently delivers antigens to DC for the in vivo induction of anti-tumor immunity. Yet, tumor ablation alone resulted in only partial protection against a subsequent tumor-challenge. In this article, the ability of various non-microbial vaccine adjuvants to modulate the immune response following cryo-ablation was tested. The data show that tumor ablation with co-injection of saponin-based adjuvants, but not oil-in-water, water-in-oil or alum-based adjuvants, creates a highly effective in situ vaccine. Draining lymph node CD11c+ DCs acquire antigens more efficiently and become increasingly activated following ablation with saponin adjuvants relative to ablation alone. Moreover, our data reveal that the saponin-based adjuvants facilitate an in this model unprecedented level of antigen cross-presentation, induction of tumor-specific CTL and long-lasting tumor protection. Collectively, combining saponin-based adjuvants with in situ tumor destruction leads to an extremely potent systemic anti-tumor response. This combination approach forms a powerful in situ DC vaccine for which no prior knowledge of tumor antigens is required. As saponin-based adjuvants are currently clinically available, they represent attractive tools for various human and veterinary settings where in situ tumor destruction is applied.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources