Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb;166(3):764-73.
doi: 10.1007/s12010-011-9465-y. Epub 2011 Dec 3.

A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene-chitosan nanocomposite film

Affiliations

A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene-chitosan nanocomposite film

Aili Sun et al. Appl Biochem Biotechnol. 2012 Feb.

Abstract

Thermally two-dimensional lattice graphene (GR) and biocompatibility chitosan (CS) act as a suitable support for the deposition of palladium nanoparticles (PdNPs). A novel hydrogen peroxide (H(2)O(2)) biosensor based on immobilization of hemoglobin (Hb) in thin film of CS containing GR and PdNPs was developed. The surface morphologies of a set of representative membranes were characterized by means of scanning electron microscopy and showed that the PdNPs are of a sphere shape and an average diameter of 50 nm. Under the optimal conditions, the immobilized Hb showed fast and excellent electrocatalytic activity to H(2)O(2) with a small Michaelis-Menten constant of 16 μmol L(-1), a linear range from 2.0 × 10(-6) to 1.1 × 10(-3) mol L(-1), and a detection limit of 6.6 × 10(-7) mol L(-1). The biosensor also exhibited other advantages, good reproducibility, and long-term stability, and PdNPs/GR-CS nanocomposites film would be a promising material in the preparation of third generation biosensor.

PubMed Disclaimer

Publication types

LinkOut - more resources