Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov-Dec;3(11-12):883-91.
doi: 10.1002/dta.388. Epub 2011 Dec 2.

The overlooked difference between human endogenous and recombinant erythropoietins and its implication for sports drug testing and pharmaceutical drug design

Affiliations

The overlooked difference between human endogenous and recombinant erythropoietins and its implication for sports drug testing and pharmaceutical drug design

Christian Reichel. Drug Test Anal. 2011 Nov-Dec.

Abstract

Sequential deglycosylation by exoglycosidase treatment (Reagent Array Analysis Method, RAAM) and subsequent sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed a profound structural difference between human endogenous and recombinant erythropoietins. While both proteins behaved similarly upon digestion with Arthrobacter ureafaciens α-sialidase and Steptococcus pneumoniae β-D-galactosidase, the action of N-acetyl-β-D-glucosaminidase from Steptococcus pneumoniae was partly blocked by endogenous but not recombinant erythropoietins. Consequently, further treatment with Jack bean α-D-mannosidase and Helix pomatia β-D-mannosidase led to only very limited additional deglycosylation of endogenous EPO, while rhEPO glycans continued to be degraded. The behaviour was visualized by SDS-PAGE combined with Western blotting. While the apparent molecular masses of most endogenous glycoforms did not further decrease after treatment with the first three enzymes, masses of most rhEPO glycoforms continued to drop after digestion with the two mannosidases. Both, human urinary and serum EPO showed this blocking effect, and all of the tested 28 recombinant epoetins were accessible to further degradation by exo-mannosidases. The majority of EPO pharmaceuticals is produced in Chinese hamster ovary (CHO) cell lines, few in other ones (i.e. baby hamster kidney (BHK) or human fibrosarcoma (HT-1080) cells). Since human endogenous EPO is primarily produced by the kidneys, tissue specific glycosylation might explain the altered deglycosylation behaviour. This difference was overlooked since EPO was first isolated from human urine in 1977. The results might prove useful for anti-doping testing and future EPO drug development.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources