Myeloid cell IL-10 production in response to leishmania involves inactivation of glycogen synthase kinase-3β downstream of phosphatidylinositol-3 kinase
- PMID: 22140263
- DOI: 10.4049/jimmunol.1100076
Myeloid cell IL-10 production in response to leishmania involves inactivation of glycogen synthase kinase-3β downstream of phosphatidylinositol-3 kinase
Abstract
Leishmania disease expression has been linked to IL-10. In this study, we investigated the regulation of IL-10 production by macrophages infected with Leishmania donovani. Infection of either murine or human macrophages brought about selective phosphorylation of Akt-2 in a PI3K-dependent manner. These events were linked to phosphorylation and inactivation of glycogen synthase kinase-3β (GSK-3β) at serine 9, as the latter was abrogated by inhibition of either PI3K or Akt. One of the transcription factors that is negatively regulated by GSK-3β is CREB, which itself positively regulates IL-10 expression. Infection of macrophages with leishmania induced phosphorylation of CREB at serine 133, and this was associated with enhanced CREB DNA binding activity and induction of IL-10. Similar to phosphorylation of GSK-3β, both phosphorylation of CREB at serine 133 and CREB DNA binding activity were abrogated in cells treated with inhibitors of either PI3K or Akt prior to infection. Furthermore, disruption of this pathway either by inhibition of Akt or by overexpression of GSK-3β markedly attenuated IL-10 production in response to leishmania. Thus, GSK-3β negatively regulates myeloid cell IL-10 production in response to leishmania. Switching off GSK-3β promotes disease pathogenesis.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
