Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;6(11):e27274.
doi: 10.1371/journal.pone.0027274. Epub 2011 Nov 28.

High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance

Affiliations

High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance

Joris Hoeks et al. PLoS One. 2011.

Abstract

Background: Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD) increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance.

Methodology: C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD) or HFD (45 kcal%). Skeletal muscle mitochondria were isolated and fatty acid (FA) composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR.

Principal findings: At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9) were decreased (-4.0%, p<0.001), whereas saturated FA (16∶0) were increased (+3.2%, p<0.001) in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6) showed a pronounced increase (+4.0%, p<0.001). Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002) and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks.

Conclusions/interpretation: Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in mitochondrial fat oxidative capacity and (muscle) insulin resistance.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Respiration rates of isolated mitochondria from mouse skeletal muscle on pyruvate and palmitoyl-CoA+carnitine.
(A) ADP-stimulated (state 3) respiration on pyruvate, (B) oligomycin-insensitive (state 4) respiration on pyruvate, (C) maximally uncoupled (state UnC) respiration on pyruvate, (D) state 3 respiration on palmitoylCoA + carnitine, (E) state 4 respiration on palmitoyl-CoA + carnitine and (F) State UnC respiration on palmitoyl-CoA + carnitine. Black and white bars represent LFD mice and HFD mice, respectively. Values are means ± SE (n = 7–8). D, significant diet effect with p<0.01; T, significant time effect with p<0.05 in state 3 and state 4 and with p<0.01 in state UnC; D*T, significant diet * time effect with p<0.05; HFD, high fat diet; LFD, low fat diet; TA, tibialis anterior; UnC, uncoupled.

References

    1. Phielix E, Schrauwen-Hinderling VB, Mensink M, Lenaers E, Meex R, et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes. 2008;57:2943–2949. - PMC - PubMed
    1. Schrauwen-Hinderling VB, Kooi ME, Hesselink MK, Jeneson JA, Backes WH, et al. Impaired in vivo mitochondrial function but similar intramyocellular lipid content in patients with type 2 diabetes mellitus and BMI-matched control subjects. Diabetologia. 2007;50:113–120. - PubMed
    1. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–273. - PubMed
    1. Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, et al. Patients with type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia. 2007;50:790–796. - PMC - PubMed
    1. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–2950. - PubMed

Publication types