Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov;5(11):e1405.
doi: 10.1371/journal.pntd.0001405. Epub 2011 Nov 29.

Visceral leishmaniasis in the Indian subcontinent: modelling epidemiology and control

Affiliations

Visceral leishmaniasis in the Indian subcontinent: modelling epidemiology and control

Anette Stauch et al. PLoS Negl Trop Dis. 2011 Nov.

Abstract

Background: In the Indian subcontinent, about 200 million people are at risk of developing visceral leishmaniasis (VL). In 2005, the governments of India, Nepal and Bangladesh started the first regional VL elimination program with the aim to reduce the annual incidence to less than 1 per 10,000 by 2015. A mathematical model was developed to support this elimination program with basic quantifications of transmission, disease and intervention parameters. This model was used to predict the effects of different intervention strategies.

Methods and findings: Parameters on the natural history of Leishmania infection were estimated based on a literature review and expert opinion or drawn from a community intervention trial (the KALANET project). The transmission dynamic of Leishmania donovani is rather slow, mainly due to its long incubation period and the potentially long persistence of parasites in infected humans. Cellular immunity as measured by the Leishmanin skin test (LST) lasts on average for roughly one year, and re-infection occurs in intervals of about two years, with variation not specified. The model suggests that transmission of L. donovani is predominantly maintained by asymptomatically infected hosts. Only patients with symptomatic disease were eligible for treatment; thus, in contrast to vector control, the treatment of cases had almost no effect on the overall intensity of transmission.

Conclusions: Treatment of Kala-azar is necessary on the level of the individual patient but may have little effect on transmission of parasites. In contrast, vector control or exposure prophylaxis has the potential to efficiently reduce transmission of parasites. Based on these findings, control of VL should pay more attention to vector-related interventions. Cases of PKDL may appear after years and may initiate a new outbreak of disease; interventions should therefore be long enough, combined with an active case detection and include effective treatment.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Model for L. donovani infection, transmission and control.
Compartments represent proportions in humans and vectors, distinguished (vertically) according to their history of infection (defined by diagnostic states). The diagnostics comprised PCR, DAT and LST with combinations shown in the bar on the left margin of the graph. Human hosts are further distinguished (horizontally) by disease and treatment status. μ1 = μHK; μ2 = μHKT1; μ3 = μHKT2; for further variables and parameters see text, Table 1, Table 2, Table 3 and Table S1 in the Supplement.
Figure 2
Figure 2. Treatment-related interventions.
Sensitivity analyses of equilibrium solutions to the effects of seven intervention parameters (A) on the prevalence of symptomatic (IHS, IHT1, IHT2, IHL) and asymptomatic infections (IHP, IHD) and (B) on the incidences of KA and PKDL. The ten scenarios refer to ten parameter combinations as shown in Table 4. The default scenario 1 used parameter values as obtained from model calibration. The duration of treatment (parameters τ1, τ2, τ3) varied in scenarios 3 and 4; early case detection (1/γHS) varied in scenarios 5, 6, and 7; and treatment efficacy (fT, p1, p2) varied in scenarios 8, 9 and 10. Scenario 2 represents a best-case scenario, using over-optimistic assumptions for all parameters. The default scenario 1 was compared to more pessimistic intervention parameters in scenarios 5, 6 and 7 and to more optimistic intervention parameters in scenarios 2, 3, 8, 9 and 10. As illustrated by the diagonally proceeding arrow, an optimal intervention would reduce the prevalence and incidence in both dimensions (see Fig. 3 and Table 5 for vector-related interventions).
Figure 3
Figure 3. Vector-related interventions.
Sensitivity analyses into the effects of vector control: (A) on the prevalence of symptomatic and asymptomatic infections and (B) on the incidences of KA and PKDL. The scenarios refer to ten parameter combinations shown in Table 5. The default scenario 1 uses parameter values as obtained from model calibration. Vector population size NF varied in scenarios 2 and 5; the flies' life expectancy 1/μF varied in scenarios 3 and 6; and their feeding cycle duration 1/β varied in scenarios 4 and 7. Scenarios 8, 9 and 10 represent combinations thereof.
Figure 4
Figure 4. Time-dependent effect of reducing the contact rate.
We assumed that the feeding cycle duration of the sand fly was doubled by the intervention from 1/β = 4 days to 8 days (scenario 4 in Fig. 3 and Table 5). The intervention lasted for 5 years (grey box). The solid curve shows the prevalence of KA and the dotted line the prevalence of PKDL.

Similar articles

Cited by

References

    1. Boelaert M, Meheus F, Sanchez A, Singh SP, Vanlerberghe V, et al. The poorest of the poor: a poverty appraisal of households affected by visceral leishmaniasis in Bihar, India. Trop Med Int Health. 2009;14:639–644. - PubMed
    1. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2007;5:873–882. - PubMed
    1. Lukes J, Mauricio IL, Schonian G, Dujardin JC, Soteriadou K, et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci U S A. 2007;104:9375–9380. - PMC - PubMed
    1. Ashford RW. The leishmaniases as emerging and reemerging zoonoses. Int J Parasitol. 2000;30:1269–1281. - PubMed
    1. Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis. 2004;27:305–318. - PubMed

Publication types

MeSH terms

Substances