Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells
- PMID: 22141136
- PMCID: PMC3259992
- DOI: 10.18632/oncotarget.360
Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells
Abstract
AXL is a receptor tyrosine kinase of the TAM family, the function of which is poorly understood. We previously identified AXL overexpression in Imatinib (IM)-resistant CML cell lines and patients. The present study was conducted to investigate the role of AXL and the mechanisms underlying AXL overexpression in Tyrosine Kinase Inhibitor (TKI)-resistant CML cells. We present evidence that high AXL expression level is a feature of TKI-resistant CML cells and knockdown of AXL sensitized TKI-resistant cells to IM. In addition, expression of wild-type AXL but not a dominant negative form of AXL confers IM-sensitive CML cells the capacity to resist IM effect. AXL overexpression required PKCα and β and constitutive activation of ERK1/2. Accordingly, GF109203X a PKC inhibitor, U0126 a MEK1 inhibitor and PKCα/β knockdown restore sensitivity to IM while PKCα or PKCβ overexpression in CML cells promotes protection against IM-induced cell death. Finally, using luciferase promoter activity assays we established that AXL is regulated transcriptionally through the AP1 transcription factor. Our findings reveal an unexpected role of AXL in resistance to TKI in CML cells, identify the molecular mechanisms involved in its overexpression and support the notion that AXL is a new marker of resistance to TKI in CML.
Figures







References
-
- Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36:93–99. - PubMed
-
- Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96:3343–3356. - PubMed
-
- Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, Auberger P. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 2010;70:1042–1052. - PubMed
-
- Puissant A, Dufies M, Raynaud S, Cassuto JP, Auberger P. Targeting lysosomes to eradicate imatinib-resistant chronic myelogenous leukemia cells. Leukemia. 2010;24:1099–1101. - PubMed
-
- Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous