Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec 10;49(6-7):509-16.
doi: 10.1016/j.enzmictec.2011.04.021. Epub 2011 May 19.

Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400

Affiliations

Antioxidant compounds improved PCB-degradation by Burkholderia xenovorans strain LB400

Bernardita L Ponce et al. Enzyme Microb Technol. .

Abstract

Polychlorobiphenyls (PCBs) are toxic and persistent organic pollutants that are widely distributed in the environment. Burkholderia xenovorans LB400 is capable of degrading aerobically an unusually wide range of PCBs. However, during PCB-degradation B. xenovorans LB400 generates reactive oxygen species (ROS) that affect its viability. The aim of this study was to increase the efficiency of PCB-degradation of B. xenovorans LB400 by adding antioxidant compounds that could increase tolerance to oxidative stress. The effect of antioxidant compounds on the growth, morphology and PCB-degradation by B. xenovorans LB400 was evaluated. α-Tocopherol or vitamin E (vitE) and berry extract (BE) increased slightly the growth of strain LB400 on biphenyl, whereas in presence of ascorbic acid or vitamin C (vitC) an inhibition of growth was observed. The growth of B. xenovorans LB400 in glucose was inhibited by the addition of 4-chlorobiphenyl (4-CB). Interestingly, in presence of α-tocopherol the growth of strain LB400 was less affected by 4-CB. By transmission electronic microscopy it was observed that α-tocopherol preserved the cell membranes and improved cell integrity of glucose-grown LB400 cells exposed to 4-CB, suggesting a protective effect of α-tocopherol. Notably, α-tocopherol increased biphenyl and 4-CB degradation by B. xenovorans LB400 in an aqueous solution. The effect of antioxidants compounds on PCB-bioremediation was evaluated in agricultural soil spiked with 2-chlorobiphenyl (2-CB), 4-CB and 2,4'-chlorobiphenyl (2,4'-CB). For bioaugmentation, LB400 cells grown on biphenyl and subsequently incubated with pyruvate were added to the soil. Native soil microbiota was able to remove PCBs. Bioaugmentation with strain LB400 increased strongly the PCB-degradation rate. Bioaugmentation with strain LB400 and biostimulation with α-tocopherol or berry extract increased further the PCB degradation. Half-life of 2,4'-CB decreased by bioaugmentation from 24 days to 4 days and by bioaugmentation in presence of α-tocopherol and berry extract to 2 days. By bioaugmentation with strain LB400, 85% of 2,4'-CB was degraded in 20 days, whereas bioaugmentation with strain LB400 and biostimulation with α-tocopherol or berry extract reduced the time to less than 13 days. This indicates that antioxidant compounds stimulated PCB-degradation in soil. Therefore, the addition of antioxidant compounds constitutes an attractive strategy for the scale-up of aerobic PCB-bioremediation processes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources