Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Feb;60(1):43-54.
doi: 10.1007/s00005-011-0156-8. Epub 2011 Dec 6.

Neutrophil myeloperoxidase: soldier and statesman

Affiliations
Review

Neutrophil myeloperoxidase: soldier and statesman

Zofia Prokopowicz et al. Arch Immunol Ther Exp (Warsz). 2012 Feb.

Erratum in

Abstract

Myeloperoxidase (MPO) is a major protein constituent of the primary granules of vertebrate neutrophils. It catalyses the hydrogen peroxide-mediated oxidation of halide ions to hypohalous acids, especially HOCl. These reactive oxygen species can participate in a variety of secondary reactions, leading to modifications of amino acids and many types of biological macromolecules. The classic paradigm views MPO as a component of the phagocyte oxygen-dependent intracellular microbicidal system, and thus an important arm of the effector phase of innate immune responses. However, the limited immunodeficiency associated with lack of MPO in mouse and human models has challenged this paradigm. In this review we examine more recent information on the interaction between MPO, its bioreactive reaction products, and targets within the inflammatory microenvironment. We propose that two assumptions of the current model may require revisiting. First, many important targets of MPO modification are extracellular, rather than present only within the phagolysosome, such as various components of neutrophil extracellular traps. Second, we suggest that the pro-inflammatory pathological role of MPO may be a particular feature of chronic inflammation. In the physiological setting of acute neutrophil-mediated inflammation MPO may also form part of a negative feedback loop which down-regulates inflammation, limits tissue damage, and facilitates the switch from innate to adaptive immunity. This different perspective on this well-studied enzyme may usefully inform further research into its function in health and disease.

PubMed Disclaimer

Publication types

LinkOut - more resources