Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;33(3):573-90.
doi: 10.1007/s13277-011-0286-y. Epub 2011 Dec 6.

An overview of targeted alpha therapy

Affiliations
Review

An overview of targeted alpha therapy

Young-Seung Kim et al. Tumour Biol. 2012 Jun.

Abstract

The effectiveness of targeted α-therapy (TAT) can be explained by the properties of α-particles. Alpha particles are helium nuclei and are ~8,000 times larger than β(-)-particles (electrons). When emitted from radionuclides that decay via an α-decay pathway, they release enormous amounts of energy over a very short distance. Typically, the range of α-particles in tissue is 50-100 μm and they have high linear energy transfer (LET) with a mean energy deposition of 100 keV/μm, providing a more specific tumor cell killing ability without damage to the surrounding normal tissues than β(-)-emitters. Due to these properties, the majority of pre-clinical and clinical trials have demonstrated that α-emitters such as (225)Ac, (211)At, (212)Bi, (213)Bi, (212)Pb, (223)Ra, and (227)Th are ideal for the treatment of smaller tumor burdens, micrometastatic disease, and disseminated disease. Even though these α-emitters have favorable properties, the development of TAT has been limited by high costs, unresolved chemistry, and limited availability of the radionuclides. To overcome these limitations, more potent isotopes, additional sources, and more efficient isotope production methods should be addressed. Furthermore, better chelation and labeling methods with the improvements of isotope delivery, targeting vehicles, molecular targets, and identification of appropriate clinical applications are still required.

PubMed Disclaimer

Conflict of interest statement

Conflicts of interest None

Figures

Fig. 1
Fig. 1
Structures of DTPA derivatives
Fig. 2
Fig. 2
Structures of DOTA, TCMC, and HEHA
Fig. 3
Fig. 3
Decay scheme of 225Ac and 213Bi
Fig. 4
Fig. 4
Decay scheme of 211At
Fig. 5
Fig. 5
Decay scheme of 212Bi and 212Pb
Fig. 6
Fig. 6
Decay scheme of 223Ra and 227Th

References

    1. Sgouros G, Ballangrud AM, Jurcic JG, McDevitt MR, Humm JL, Erdi YE, Mehta BM, Finn RD, Larson SM, Scheinberg DA. Pharmacokinetics and dosimetry of an α-particle emitter antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999;40:1935–46. - PubMed
    1. Zalutsky MR, Bigner DD. Radioimmunotherpy with α-particle emitting radioimmunoconjugates. Acta Oncol. 1996;35:373–9. - PubMed
    1. Zalutsky MR, Schuster JM, Garg PK, Archer GE, DeWhirst MW, Binger DD. Two approaches for enhancing radioimmunotherapy: alpha emitters and hyperthermia. Recent Results Cancer Res. 1996;141:101–22. - PubMed
    1. Nikula TK, McDevitt MR, Finn RD, Wu CC, Kozak RW, Garmestani K, Brechbiel MW, Curcio ML, Pippin CG, Tiffany-Jones L, Geerlings MW, Apostolidis C, Molinet R, Gansow OA, Sheinberg DA. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med. 1999;40:166–76. - PubMed
    1. Raju MR, Eisen Y, Carpenter S, Inkret WC. Radiobiology of alpha-particles. 3. Cell inactivation by alpha-particle traversals of the cell-nucleus. Radiat Res. 1991;128:204–9. - PubMed

Publication types

LinkOut - more resources