Determination of a constitutive relation for passive myocardium: II. Parameter estimation
- PMID: 2214718
- DOI: 10.1115/1.2891194
Determination of a constitutive relation for passive myocardium: II. Parameter estimation
Abstract
In the first paper of this series, we proposed a new transversely isotropic pseudostrain-energy function W for describing the biomechanical behavior of excised noncontracting myocardium. The specific functional form of W was inferred directly from biaxial data to be a polynomial function of two coordinate invariant measures of the finite deformation and five material parameters. In this paper, best-fit values of the material parameters are determined from biaxial data using a nonlinear least-squares regression. These values of the parameters are shown to be well-determined, and the final constitutive relation is shown to have good predictive capabilities. Since the proposed constitutive relation describes much broader classes of in-vitro biaxial data than previously proposed relations, it may be better applicable to analyses of stress in the passive heart.
Similar articles
-
Determination of a constitutive relation for passive myocardium: I. A new functional form.J Biomech Eng. 1990 Aug;112(3):333-9. doi: 10.1115/1.2891193. J Biomech Eng. 1990. PMID: 2214717
-
On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function.J Biomech Eng. 1987 Nov;109(4):298-304. doi: 10.1115/1.3138684. J Biomech Eng. 1987. PMID: 3695429
-
A constitutive relation for passive right-ventricular free wall myocardium.J Biomech. 1993 Nov;26(11):1341-5. doi: 10.1016/0021-9290(93)90357-k. J Biomech. 1993. PMID: 8262995
-
Constitutive modelling of passive myocardium: a structurally based framework for material characterization.Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3445-75. doi: 10.1098/rsta.2009.0091. Philos Trans A Math Phys Eng Sci. 2009. PMID: 19657007 Review.
-
A Contemporary Look at Biomechanical Models of Myocardium.Annu Rev Biomed Eng. 2019 Jun 4;21:417-442. doi: 10.1146/annurev-bioeng-062117-121129. Annu Rev Biomed Eng. 2019. PMID: 31167105 Free PMC article. Review.
Cited by
-
Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance.Cardiovasc Eng Technol. 2016 Dec;7(4):309-351. doi: 10.1007/s13239-016-0276-8. Epub 2016 Aug 9. Cardiovasc Eng Technol. 2016. PMID: 27507280 Free PMC article. Review.
-
Biaxial and failure properties of passive rat middle cerebral arteries.J Biomech. 2013 Jan 4;46(1):91-6. doi: 10.1016/j.jbiomech.2012.10.015. Epub 2012 Nov 9. J Biomech. 2013. PMID: 23141521 Free PMC article.
-
An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium.Biomech Model Mechanobiol. 2018 Feb;17(1):31-53. doi: 10.1007/s10237-017-0943-1. Epub 2017 Aug 31. Biomech Model Mechanobiol. 2018. PMID: 28861630 Free PMC article.
-
Modeling autoregulation of cardiac excitation-Ca-contraction and arrhythmogenic activities in response to mechanical load changes.iScience. 2025 Jan 10;28(2):111788. doi: 10.1016/j.isci.2025.111788. eCollection 2025 Feb 21. iScience. 2025. PMID: 39935456 Free PMC article.
-
Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy.J Biomech Eng. 2013 Feb;135(2):021004. doi: 10.1115/1.4023503. J Biomech Eng. 2013. PMID: 23445049 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources