Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Jul 10;254(13):5855-61.

Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition

  • PMID: 221485
Free article

Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition

J J Mekalanos et al. J Biol Chem. .
Free article

Abstract

Cholera toxin containing intact A chain (Mr = 29,000) was isolated, and its enzymic properties were characterized. The "unnicked" form of the toxin, produced by a protease-deficient, hypertoxinogenic mutant of Vibrio cholerae 569B, had greatly reduced activity in catalyzing the NAD+-glycohydrolase and ADP-ribosyltransferase reactions as compared to the naturally nicked form commonly isolated. In the latter, the intact A chain has been cleaved by bacterial proteases to yield disulfide-linked A1 and A2 chains (Mr = 23,000 and 6,000, respectively). Digestion of unnicked toxin with trypsin or elastase yielded a nicked form similar to or identical with the naturally nicked toxin, but chymotryptic digestion did not. Disulfide bond reduction was necessary for expression of enzymic activity by naturally nicked or trypsin-nicked toxin, or the A1A2 protomer. Fractionation of thiol-treated, nicked cholera toxin by ion exchange, molecular exclusion, or affinity chromatography gave results suggesting that the reduced toxin displays enzymic activity while remaining structurally intact.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources