Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition
- PMID: 221485
Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition
Abstract
Cholera toxin containing intact A chain (Mr = 29,000) was isolated, and its enzymic properties were characterized. The "unnicked" form of the toxin, produced by a protease-deficient, hypertoxinogenic mutant of Vibrio cholerae 569B, had greatly reduced activity in catalyzing the NAD+-glycohydrolase and ADP-ribosyltransferase reactions as compared to the naturally nicked form commonly isolated. In the latter, the intact A chain has been cleaved by bacterial proteases to yield disulfide-linked A1 and A2 chains (Mr = 23,000 and 6,000, respectively). Digestion of unnicked toxin with trypsin or elastase yielded a nicked form similar to or identical with the naturally nicked toxin, but chymotryptic digestion did not. Disulfide bond reduction was necessary for expression of enzymic activity by naturally nicked or trypsin-nicked toxin, or the A1A2 protomer. Fractionation of thiol-treated, nicked cholera toxin by ion exchange, molecular exclusion, or affinity chromatography gave results suggesting that the reduced toxin displays enzymic activity while remaining structurally intact.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
