Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator
- PMID: 22148855
- DOI: 10.1021/la203903a
Biomarker-mediated disruption of coffee-ring formation as a low resource diagnostic indicator
Abstract
The ring pattern resulting from the unique microfluidics in an evaporating coffee drop is a well-studied mass transport phenomenon generating interest in the research community mostly from a mechanistic perspective. In this report, we describe how biomarker-induced particle-particle assemblies, magnetic separation, and evaporation-driven ring formation can be combined for simple pathogen detection. In this assay design, the presence of biomarkers causes self-assembly of a magnetic nanoparticle and a fluorescently labeled micrometer-sized particle. A small spherical magnet under the center of the drop prevents these assemblies from migrating to the drop's edge while a nonreactive control particle flows to the edge forming a ring pattern. Thus the presence or absence of biomarker results in distinctly different distributions of particles in the dried drop. Proof-of-principle studies using poly-L-histidine, a peptide mimic of the malaria biomarker pfHRPII, show that the predicted particle distributions occur with a limit of detection of approximately 200-300 nM.
© 2011 American Chemical Society
Similar articles
-
Coffee rings as low-resource diagnostics: detection of the malaria biomarker Plasmodium falciparum histidine-rich protein-II using a surface-coupled ring of Ni(II)NTA gold-plated polystyrene particles.ACS Appl Mater Interfaces. 2014 May 14;6(9):6257-63. doi: 10.1021/am501452k. Epub 2014 Apr 23. ACS Appl Mater Interfaces. 2014. PMID: 24758478
-
Low-resource method for extracting the malarial biomarker histidine-rich protein II to enhance diagnostic test performance.Anal Chem. 2012 Jul 17;84(14):6136-42. doi: 10.1021/ac301030m. Epub 2012 Jun 26. Anal Chem. 2012. PMID: 22734432
-
Magneto immunoassays for Plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles.Anal Chem. 2011 Jul 15;83(14):5570-7. doi: 10.1021/ac200573s. Epub 2011 Jun 24. Anal Chem. 2011. PMID: 21619038
-
Magnetoanalysis of micro/nanoparticles: a review.Anal Chim Acta. 2011 Apr 1;690(2):137-47. doi: 10.1016/j.aca.2011.02.019. Epub 2011 Feb 12. Anal Chim Acta. 2011. PMID: 21435469 Review.
-
Microfluidic reactors for diagnostics applications.Annu Rev Biomed Eng. 2011 Aug 15;13:321-43. doi: 10.1146/annurev-bioeng-070909-105312. Annu Rev Biomed Eng. 2011. PMID: 21568712 Review.
Cited by
-
Cross-sectional tracking of particle motion in evaporating drops: flow fields and interfacial accumulation.Langmuir. 2013 May 28;29(21):6221-31. doi: 10.1021/la400542x. Epub 2013 May 13. Langmuir. 2013. PMID: 23611508 Free PMC article.
-
Micro-nanoparticles magnetic trap: Toward high sensitivity and rapid microfluidic continuous flow enzyme immunoassay.Biomicrofluidics. 2020 Jan 30;14(1):014111. doi: 10.1063/1.5126027. eCollection 2020 Jan. Biomicrofluidics. 2020. PMID: 32038740 Free PMC article.
-
Data-driven time-dependent state estimation for interfacial fluid mechanics in evaporating droplets.Sci Rep. 2021 Jun 30;11(1):13579. doi: 10.1038/s41598-021-92965-8. Sci Rep. 2021. PMID: 34193897 Free PMC article.
-
Lithography-Free Route to Hierarchical Structuring of High-χ Block Copolymers on a Gradient Patterned Surface.Materials (Basel). 2020 Jan 9;13(2):304. doi: 10.3390/ma13020304. Materials (Basel). 2020. PMID: 31936578 Free PMC article.
-
Contact angle changes induced by immunocomplex formation.Analyst. 2014 Mar 21;139(6):1340-4. doi: 10.1039/c3an02189k. Analyst. 2014. PMID: 24482797 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources