Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;16(1):33-53.
doi: 10.1080/10255842.2011.603309. Epub 2011 Dec 8.

Influence of differing material properties in media and adventitia on arterial adaptation--application to aneurysm formation and rupture

Affiliations
Review

Influence of differing material properties in media and adventitia on arterial adaptation--application to aneurysm formation and rupture

H Schmid et al. Comput Methods Biomech Biomed Engin. 2013.

Abstract

Experimental and computational studies suggest a substantial variation in the mechanical responses and collagen fibre orientations of the two structurally important layers of the arterial wall. Some observe the adventitia to be an order of magnitude stiffer than the media whilst others claim the opposite. Furthermore, studies show that molecular metabolisms may differ substantially in each layer. Following a literature review that juxtaposes the differing layer-specific results we create a range of different hypothetical arteries: (1) with different elastic responses, (2) different fibre orientations, and (3) different metabolic activities during adaptation. We use a finite element model to investigate the effects of those on: (1) the stress response in homeostasis; (2) the time course of arterial adaptation; and (3) an acute increase in luminal pressure due to a stressful event and its influence on the likelihood of aneurysm rupture. Interestingly, for all hypothetical cases considered, we observe that the adventitia acts to protect the wall against rupture by keeping stresses in the media and adventitia below experimentally observed ultimate strength values. Significantly, this conclusion holds true in pathological conditions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources