Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;23(17):2223-40.
doi: 10.1163/156856211X613915. Epub 2012 May 8.

Long-term effect of gamma irradiation on the functional properties and cytocompatibility of multiblock co-polymer films

Affiliations

Long-term effect of gamma irradiation on the functional properties and cytocompatibility of multiblock co-polymer films

R Dorati et al. J Biomater Sci Polym Ed. 2012.

Abstract

The purpose of this work was to investigate the long-term effect of gamma-irradiation treatment on the functional properties of PEG-PDLLA and PEG-PLGA films and to evaluate the cytocompatibility of sterilized samples. Chemical and thermal properties, and cytocompatibility of sterilized films were detected for samples at time zero and after storage at 5 ± 3°C for 60 days. An in vitro degradation study was carried out on polymer samples to examine the effect of sterilization on the degradation performances of co-polymer films. Incubated samples were characterized in terms of film surface structure (SEM), chemical (GPC) and thermal (DSC) properties. The study performed on films upon gamma sterilization showed no significant changes of the PEG-PDLLA and PEG-PLGA film structure, while GPC analysis highlighted that the effect of gamma irradiation was dependent on the Mw and composition of polymers. DSC traces suggested more pronounced gamma-ray effects on the PEG-PLGA multiblock co-polymer. During the stability study important changes in terms of structure surface, thermal properties and cytocompatibility were observed and investigated. Data collected during the in vitro degradation study emphasized the need to know and investigate the degradation performances and behaviour of polymer or polymer systems (as DDS, scaffolds and bandage) treated with gamma rays.

Keywords: Multiblock co-polymers; cytocompatibility; degradation behaviour; gamma irradiation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources