Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;52(3):761-72.
doi: 10.1016/j.yjmcc.2011.11.013. Epub 2011 Dec 2.

Reduced cardiac CapZ protein protects hearts against acute ischemia-reperfusion injury and enhances preconditioning

Affiliations

Reduced cardiac CapZ protein protects hearts against acute ischemia-reperfusion injury and enhances preconditioning

Feng Hua Yang et al. J Mol Cell Cardiol. 2012 Mar.

Abstract

The Z-disc protein CapZ has historically been classified as a structural element, anchoring sarcomeric actin. Our previous work expanded its role to include signal transduction, as CapZ transgenic myofilaments are less sensitive to protein kinase C (PKC). Myocardial PKC has paradoxical effects, mediating both preconditioning and ischemia-reperfusion (IR) injury. Our objective was to determine how decreased CapZ affects IR injury and cardiac preconditioning. Mouse hearts were subjected to 20 min global ischemia and 60 min reperfusion. Some hearts were preconditioned with intermittent IR (IPC). Left ventricular function was assessed and myocardial tissue collected post-IR for molecular analysis and tissue staining. Post-ischemic function was significantly better and infarct size smaller in CapZ transgenic hearts, as compared to wildtype. IPC decreased IR damage in both wildtype and CapZ transgenic hearts, although CapZ transgenic hearts performed significantly better than wildtype. Immunoblotting revealed increased myofilament-associated PKC-α and -ε following IR in wildtype hearts, but no change in PKC-δ or -ζ. By contrast, post-IR myofilament-associated PKC-α was significantly higher in CapZ transgenic mice but the rise in PKC-ε was attenuated. Both PKC-δ and PKC-ζ decreased in CapZ transgenic myofilaments following IR. IPC increased myofilament-associated PKC-α and -ε, while decreasing PKC-δ in wildtype hearts. Preconditioned CapZ IPC hearts showed attenuated increases in myofilament PKC-α and -ε, but also a significant decrease in myofilament PKC-δ and -ζ. These data demonstrate significant differences in post-IR myofilament PKC in untreated and preconditioned CapZ transgenic mice. CapZ reduction did not dramatically affect post-IR myofilament function, nor did preconditioning. These results demonstrate that CapZ deficiency decreases IR injury, while providing enhanced cardioprotection with IPC. The cardioprotected phenotype of CapZ transgenic mice is associated with an altered translocation of PKC-isoforms to cardiac myofilaments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources