Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Apr 1;50(3):796-814.
doi: 10.1016/j.ijbiomac.2011.11.021. Epub 2011 Dec 1.

Peptide screening to knockdown Bcl-2's anti-apoptotic activity: implications in cancer treatment

Affiliations

Peptide screening to knockdown Bcl-2's anti-apoptotic activity: implications in cancer treatment

Pawan Kumar Raghav et al. Int J Biol Macromol. .

Abstract

Bcl-2 (B cell lymphoma-2) is an anti-apoptotic member of Bcl-2 family and its overexpression causes development of several types of cancer. The BH3 domain of pro-apoptotic and BH3-only proteins is capable of binding to Bcl-2 protein to induce apoptosis. This binding is the basis for the development of novel anticancer drug which would likely antagonize Bcl-2 overexpression. In this study we have identified BH3 domain of Bax (Bax BH3) as potentially the best Bcl-2 antagonist by performing docking of BH3 peptides (peptides representing BH3 domain of pro-apoptotic and BH3-only proteins) into the Bcl-2 hydrophobic groove formed by BH3, BH1 and BH2 domains (also referred as BH3 cleft). To predict the best small antagonist for Bcl-2, three groups of small peptides (pentapeptide, tetrapeptide and tripeptide) were designed and screened against Bcl-2 which revealed the structural importance of a set of residues playing a vital role in interaction with Bcl-2. The docking and scoring function identified KRIG and KRI as specific peptides among the screened small peptides responsible for Bcl-2 neutralization and would induce apoptosis. The applied pharmacokinetic and pharmacological filters to all small peptides signify that only IGD has drug-like properties and displayed good oral bioavailability. However, the obtained binding affinity of IGD to Bcl-2 was diminutive. Hence deprotonation, amidation, acetylation, benzoylation, benzylation, and addition of phenyl, deoxyglucose and glucose fragments were performed to increase the binding affinity and to prevent its rapid degradation. Benzoylated IGD tripeptide (IGD(bzo)) was observed to have increased binding affinity than IGD with acceptable pharmacokinetic filters. In addition, stability of Bcl-2/IGD(bzo) complex was validated by Molecular Dynamics (MD) simulations revealing improved binding energy, salt bridges and strong interaction energies. This study suggests a new molecule that inhibits Bcl-2 associated cancer/tumor regression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources