Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;12(1):249-56.
doi: 10.1016/j.intimp.2011.11.018. Epub 2011 Dec 11.

Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge

Affiliations

Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge

Jingjing Kang et al. Int Immunopharmacol. 2012 Jan.

Abstract

As a natural alkaloid extracted from Amaryllidaceae, lycorine shows various biological effects on tumor cells. Here we show that lycorine dose-dependently inhibited the LPS-induced up-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein level in RAW264.7 cells. Besides, it also inhibited NO, PGE(2), TNF-α and IL-6 release from LPS-treated RAW264.7 cells. RT-PCR experiments showed that lycorine suppressed LPS-induced iNOS but not COX-2 gene expression. Moreover, lycorine decreased LPS-induced mortality in mice. Mechanistically, LPS-induced activation of P38 and STATs pathways was suppressed significantly by lycorine. In addition, lycorine did not interfere with the phosphorylation of ERK1/2, JNK1/2 and NF-κB pathways. In conclusion, lycorine inhibits LPS-induced production of pro-inflammatory mediators and increases the survival rate of mice after LPS challenge, suggesting that lycorine could play an anti-inflammatory role in response to LPS.

PubMed Disclaimer

Publication types

MeSH terms

Substances