H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation
- PMID: 22158710
- PMCID: PMC3272100
- DOI: 10.1161/CIRCRESAHA.111.258871
H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation
Abstract
Rationale: Hydrogen peroxide (H(2)O(2)) serves as a key endothelium-derived hyperpolarizing factor mediating flow-induced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H(2)O(2) elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H(2)O(2) involves the oxidation of cysteine residues in its target proteins, including protein kinase G (PKG)-Iα, thereby modulating their activities.
Objective: Here we hypothesize that H(2)O(2) dilates HCAs through direct oxidation and activation of PKG-Iα leading to the opening of the large-conductance Ca(2+)-activated K(+) (BK(Ca)) channel and subsequent smooth muscle hyperpolarization.
Methods and results: Flow and H(2)O(2) induced pressure gradient/concentration-dependent vasodilation in isolated endothelium-intact and -denuded HCAs, respectively. The dilation was largely abolished by iberiotoxin, a BK(Ca) channel blocker. The PKG inhibitor Rp-8-Br-PET-cGMP also markedly inhibited flow- and H(2)O(2)-induced dilation, whereas the soluble guanylate cyclase inhibitor ODQ had no effect. Treatment of coronary smooth muscle cells (SMCs) with H(2)O(2) elicited dose-dependent, reversible dimerization of PKG-Iα, and induced its translocation to the plasma membrane. Patch-clamp analysis identified a paxilline-sensitive single-channel K(+) current with a unitary conductance of 246-pS in freshly isolated coronary SMCs. Addition of H(2)O(2) into the bath solution significantly increased the probability of BK(Ca) single-channel openings recorded from cell-attached patches, an effect that was blocked by the PKG-Iα inhibitor DT-2. H(2)O(2) exhibited an attenuated stimulatory effect on BK(Ca) channel open probability in inside-out membrane patches.
Conclusions: H(2)O(2) dilates HCAs through a novel mechanism involving protein dimerization and activation of PKG-Iα and subsequent opening of smooth muscle BK(Ca) channels.
Figures
References
-
- Perez-Vizcaino F, Cogolludo A, Moreno L. Reactive oxygen species signaling in pulmonary vascular smooth muscle. Respir Physiol Neurobiol. 2010;174:212–220. - PubMed
-
- Schröder E, Eaton P. Hydrogen peroxide as an endogenous mediator and exogenous tool in cardiovascular research: issues and considerations. Curr Opin Pharmacol. 2008;8:153–159. - PubMed
-
- Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol. 2007;292:H2023–H2031. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
