Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;2(12):2342-2352.
doi: 10.1039/C1SC00440A.

Chemical synthesis and functionalization of clickable glycosylphosphatidylinositol anchors

Affiliations

Chemical synthesis and functionalization of clickable glycosylphosphatidylinositol anchors

Benjamin M Swarts et al. Chem Sci. 2011.

Abstract

Glycosylphosphatidylinositol (GPI) anchorage is a common posttranslational modification of eukaryotic proteins. Chemical synthesis of structurally defined GPIs and GPI derivatives is a necessary step toward understanding the properties and functions of these molecules in biological systems. In this work, the synthesis of several functionalized GPI anchors was accomplished using the para-methoxybenzyl (PMB) group for permanent hydroxyl protection, which allowed the incorporation of functionalities that are incompatible with permanent protecting groups traditionally used in carbohydrate synthesis. A flexible convergent-divergent assembly strategy enabled efficient access to a diverse set of target structures, including "clickable" Alkynyl-GPIs 1 and 2 and Azido-GPI 3. For global deprotection, a one-pot reaction was employed to afford the target GPIs in excellent yields (85-97%). Fully deprotected clickable GPIs 2 and 3 were readily conjugated to imaging and affinity probes via Cu(I)-catalyzed and Cu-free strain-promoted [3+2] cycloaddition, respectively, resulting in GPI-Fluor 4 and GPI-Biotin 5.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
GPI structure and anchoring function.
Fig. 2
Fig. 2
Synthetic targets.
Fig. 3
Fig. 3
Possible mechanism of 1,6-anhydro sugar formation.
Scheme 1
Scheme 1
Convergent-divergent synthetic strategy.
Scheme 2
Scheme 2
(A) Failed preparation of 8 using initial 1,6-O-differentiation. (B) Synthesis of 8 via delayed 1,6-O-differentiation. (a) NaH, AllBr, DMF, 81%. (b) AcCl, CH2Cl2, MeOH, 98%. (c) NaH, PMBCl, DMF, 73%. (d) Ti(Oi-Pr)4, cyclohexylmagnesium chloride, THF, Et2O, 85%. (e) Bu2SnO, toluene, reflux; AllBr, CsF, DMF, 72%. (f) (1S)-(−)-camphanic chloride, DMAP, Et3N, CH2Cl2, 46%. (g) 1 M NaOH, MeOH, THF, 95%.
Scheme 3
Scheme 3
Synthesis of donors 9 and 30. (a) AllOH, SnCl4, MS 4 Å, CH2Cl2, 81%. (b) NaOMe, MeOH. (c) anisaldehyde dimethyl acetal, CSA, DMF, 77% for 22, 78% for 28 (two steps). (d) NaH, PMBCl, DMF, 97% for 23, 95% for 29. (e) NaBH3CN, dry HCl in Et2O, MS 4 Å, THF. (f) TBSOTf, 2,6-lutidine, CH2Cl2, 60% for 24, 72% for 30 (two steps). (g) [Ir(COD)(PMePh2)2]PF6, H2, THF; then HgCl2, HgO, acetone, H2O, 85%. (h) Cl3CCN, DBU, CH2Cl2, 83%. (i) BnNH2, THF, 87%. (j) DAST, CH2Cl2, 98%.
Scheme 4
Scheme 4
Synthesis of pseudodisaccharide 35. (a) 1H-tetrazole, CH3CN, CH2Cl2; then t-BuOOH, 0 °C. (b) Et3N·3HF, THF, CH3CN, 54% (two steps).
Scheme 5
Scheme 5
Synthesis of mannose building blocks 1012. (a) Bu2SnO, toluene, reflux; PMBCl, CsF, DMF. (b) NaH, AllBr, DMF, 68% (two steps). (c) DIBAL-H, CH2Cl2, 82%. (d) NaOMe, MeOH. (e) NaH, PMBCl, DMF, 76% (two steps). (f) AcOH-H2O (1:1), 70%. (g) Cl3CCN, DBU, CH2Cl2, 77%. (h) AllOH, BF3·OEt2, MS 4 Å, CH2Cl2, 66% (two steps from d-mannose). (i) NaOMe, MeOH. (j) PMTrtCl, pyridine, 66% (two steps). (k) NaH, PMBCl, DMF, 73%. (l) AcOH, H2O, CH2Cl2, 94%. (m) TBSCl, pyridine, 88%. (n) PdCl2, AcOH, NaOAc, CH2Cl2, H2O, 82%. (o) Cl3CCN, DBU, CH2Cl2, 73%.
Scheme 6
Scheme 6
Synthesis of trimannoside 7. (a) TMSOTf (cat.), MS 4 Å, CH2Cl2, 0 °C. (b) K2CO3, MeOH, 66% (two steps). (c) 12, TMSOTf (cat.), MS 4 Å, Et2O, 0 °C, 76%.
Scheme 7
Scheme 7
Key glycosylation and phosphorylation reactions. (a) p-TolSCl, AgOTf, TTBP, wet CH2Cl2, 50% (68% BRSM). (b) Cl3CCN, DBU, CH2Cl2, 92%. (c) 35, TMSOTf (cat.), MS 4 Å, Et2O. (d) Et3N·3HF, THF, CH3CN, 83% (two steps). (e) 47, 1H-tetrazole, CH2Cl2, CH3CN; then t-BuOOH, 0 °C, 81% (two steps). (f) [Ir(COD)(PMePh2)2]PF6, H2, THF; then HgCl2, HgO, acetone, H2O, 90%.
Scheme 8
Scheme 8
Synthesis of first generation Alkynyl-GPI 1. (a) excess succinic anhydride, DMAP, CH2Cl2, MS 4 Å, 67%. (b) propargyl amine, EDCI, HOBt, CH2Cl2, DMF, 75%. (c) Zn, AcOH, CH2Cl2, 1 h; DBU, CH2Cl2 1 h; CH2Cl2-TFA (9:1), 30 min, 85% (0.40 mg, three steps).
Scheme 9
Scheme 9
Synthesis of second generation Alkynyl-GPI 2. (a) Ti(Oi-Pr)4, cyclopentylmagnesium chloride, THF, Et2O, 82%. (b) NaH, propargyl bromide, DMF, 78%. (c) para-nitrobenzenesulfenyl chloride, AgOTf, TTBP, wet CH2Cl2, 77%. (d) Cl3CCN, DBU, CH2Cl2, 90%. (e) 35, TMSOTf (cat.), MS 4 Å, Et2O. (f) Et3N·3HF, THF, CH3CN, 82% (two steps). (g) 47, 1H-tetrazole, CH2Cl2, CH3CN; then t-BuOOH, −40 °C, 72% (two steps). (h) Zn, AcOH, CH2Cl2, 1 h; DBU, CH2Cl2 1 h; CH2Cl2-TFA (9:1), 30 min, 93% (1.03 mg, three steps).
Scheme 10
Scheme 10
Synthesis of modified pseudodisaccharide 60. (a) Zn, AcOH, CH2Cl2. (b) FmocCl, NaHCO3, 1,4-dioxane-H2O (10:1), 78% (two steps). (c) 34, 1H-tetrazole, CH2Cl2, CH3CN; then t-BuOOH, 0 °C. (d) Et3N·3HF, THF, CH3CN, 67% (two steps).
Scheme 11
Scheme 11
Synthesis of second generation Azido-GPI 3. (a) NaH, tert-butyl bromoacetate, DMF, 77%. (b) LiAlH4, THF, 77%. (c) MsCl, DIPEA, CH2Cl2. (d) NaN3, DMF, 90 °C, 82% (two steps). (e) NIS, AgOTf, TTBP, wet CH2Cl2, 71%. (f) Cl3CCN, DBU, CH2Cl2, 96%. (g) 60, TMSOTf (cat.), MS 4 Å, CH2Cl2. (h) Et3N·3HF, THF, CH3CN, 30% (two steps, 88% BRSM). (i) 47, 1H-tetrazole, CH2Cl2, CH3CN; then t-BuOOH, 0 °C, 61% (two steps). (j) DBU, CH2Cl2 1 h; CH2Cl2-TFA (9:1), 30 min, 97% (0.76 mg, two steps).
Scheme 12
Scheme 12
Click reactions of GPIs 2 and 3 to form GPI-conjugates 4 and 5. (a) 5 equivalents Azide-Fluor 488 (65), CuSO4, sodium ascorbate, 37 °C, THF-MeOH-H2O (1:1:1). (b) BARAC-biotin (66), CHCl3-MeOH-H2O (3:3:1).

Similar articles

Cited by

References

    1. Ferguson MAJ, Williams AF. Annu. Rev. Biochem. 1988;57:121–138. - PubMed
    1. Englund PT. Annu. Rev. Biochem. 1993;62:121–138. - PubMed
    1. Ikezawa H. Biol. Pharm. Bull. 2002;25:409–417. - PubMed
    1. Paulick MG, Bertozzi CR. Biochemistry. 2008;47:6991–7000. - PMC - PubMed
    1. Ferguson MA. J. Cell. Sci. 1999;112:2799–2809. - PubMed