Bioconjugation strategies for microtoroidal optical resonators
- PMID: 22163409
- PMCID: PMC3230978
- DOI: 10.3390/s101009317
Bioconjugation strategies for microtoroidal optical resonators
Abstract
The development of label-free biosensors with high sensitivity and specificity is of significant interest for medical diagnostics and environmental monitoring, where rapid and real-time detection of antigens, bacteria, viruses, etc., is necessary. Optical resonant devices, which have very high sensitivity resulting from their low optical loss, are uniquely suited to sensing applications. However, previous research efforts in this area have focused on the development of the sensor itself. While device sensitivity is an important feature of a sensor, specificity is an equally, if not more, important performance parameter. Therefore, it is crucial to develop a covalent surface functionalization process, which also maintains the device's sensing capabilities or optical qualities. Here, we demonstrate a facile method to impart specificity to optical microcavities, without adversely impacting their optical performance. In this approach, we selectively functionalize the surface of the silica microtoroids with biotin, using amine-terminated silane coupling agents as linkers. The surface chemistry of these devices is demonstrated using X-ray photoelectron spectroscopy, and fluorescent and optical microscopy. The quality factors of the surface functionalized devices are also characterized to determine the impact of the chemistry methods on the device sensitivity. The resulting devices show uniform surface coverage, with no microstructural damage. This work represents one of the first examples of non-physisorption-based bioconjugation of microtoroidal optical resonators.
Keywords: bioconjugation; high quality factor; optical resonators; sensors.
Figures










Similar articles
-
Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators.Sci Rep. 2015 Aug 14;5:13173. doi: 10.1038/srep13173. Sci Rep. 2015. PMID: 26271605 Free PMC article.
-
Attaching biological probes to silica optical biosensors using silane coupling agents.J Vis Exp. 2012 May 1;(63):e3866. doi: 10.3791/3866. J Vis Exp. 2012. PMID: 22588224 Free PMC article.
-
Optical waveguide sensor based on silica nanotube arrays for label-free biosensing.Biosens Bioelectron. 2015 May 15;67:230-6. doi: 10.1016/j.bios.2014.08.021. Epub 2014 Aug 18. Biosens Bioelectron. 2015. PMID: 25175877
-
Surface plasmon resonance biosensing.Methods Mol Biol. 2009;503:65-88. doi: 10.1007/978-1-60327-567-5_5. Methods Mol Biol. 2009. PMID: 19151937 Review.
-
Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors.Sensors (Basel). 2010;10(11):9630-46. doi: 10.3390/s101109630. Epub 2010 Nov 1. Sensors (Basel). 2010. PMID: 22163431 Free PMC article. Review.
Cited by
-
Whispering gallery mode sensors.Adv Opt Photonics. 2015 Jun 30;7(2):168-240. doi: 10.1364/AOP.7.000168. Adv Opt Photonics. 2015. PMID: 26973759 Free PMC article.
-
Biofunctionalization of Multiplexed Silicon Photonic Biosensors.Biosensors (Basel). 2022 Dec 29;13(1):53. doi: 10.3390/bios13010053. Biosensors (Basel). 2022. PMID: 36671887 Free PMC article. Review.
-
Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces.Mater Sci Eng C Mater Biol Appl. 2014 Feb 1;35:283-90. doi: 10.1016/j.msec.2013.11.017. Epub 2013 Nov 20. Mater Sci Eng C Mater Biol Appl. 2014. PMID: 24411379 Free PMC article.
-
Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices.Nanophotonics. 2012 Dec;1(3-4):267-291. doi: 10.1515/nanoph-2012-0021. Epub 2012 Dec 6. Nanophotonics. 2012. PMID: 26918228 Free PMC article.
-
Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators.Sci Rep. 2015 Aug 14;5:13173. doi: 10.1038/srep13173. Sci Rep. 2015. PMID: 26271605 Free PMC article.
References
-
- Luppa PB, Sokoll LJ, Chan DW. Immunosensors—Principles and applications to clinical chemistry. Clin. Chim. Acta. 2001;314:1–26. - PubMed
-
- Ambrose WP, Goodwin PM, Jett JH, van Orden A, Werner JH, Keller RA. Single molecule fluorescence spectroscopy at ambient temperature. Chem. Rev. 1999;99:2929–2956. - PubMed
-
- Funatsu T, Harada Y, Higuchi H, Tokunaga M, Saito K, Ishii Y, Vale RD, Yanagida T. Imaging and nano-manipulation of single biomolecules. Biophys. Chem. 1997;68:63–72. - PubMed
-
- Wormke S, Mackowski S, Brotosudarmo THP, Jung C, Zumbusch A, Ehrl M, Scheer H, HofMann E, Hiller RG, Brauchle C. Monitoring fluorescence of individual chromophores in peridininchlorophyll-protein complex using single molecule spectroscopy. Biochim. Biophys. Acta-Bioenerg. 2007;1767:956–964. - PubMed
-
- Xie SN. Single-molecule approach to enzymology. Single Mol. 2001;2:229–236.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources