Facial expression recognition based on local binary patterns and kernel discriminant isomap
- PMID: 22163713
- PMCID: PMC3231257
- DOI: 10.3390/s111009573
Facial expression recognition based on local binary patterns and kernel discriminant isomap
Abstract
Facial expression recognition is an interesting and challenging subject. Considering the nonlinear manifold structure of facial images, a new kernel-based manifold learning method, called kernel discriminant isometric mapping (KDIsomap), is proposed. KDIsomap aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. KDIsomap is used to perform nonlinear dimensionality reduction on the extracted local binary patterns (LBP) facial features, and produce low-dimensional discrimimant embedded data representations with striking performance improvement on facial expression recognition tasks. The nearest neighbor classifier with the Euclidean metric is used for facial expression classification. Facial expression recognition experiments are performed on two popular facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database. Experimental results indicate that KDIsomap obtains the best accuracy of 81.59% on the JAFFE database, and 94.88% on the Cohn-Kanade database. KDIsomap outperforms the other used methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), kernel linear discriminant analysis (KLDA) as well as kernel isometric mapping (KIsomap).
Keywords: dimensionality reduction; facial expression recognition; isometric mapping; kernel; local binary patterns.
Figures








Similar articles
-
Robust Face Recognition Based on a New Supervised Kernel Subspace Learning Method.Sensors (Basel). 2019 Apr 6;19(7):1643. doi: 10.3390/s19071643. Sensors (Basel). 2019. PMID: 30959875 Free PMC article.
-
Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image.IEEE Trans Image Process. 2006 Sep;15(9):2481-92. doi: 10.1109/tip.2006.877435. IEEE Trans Image Process. 2006. PMID: 16948295
-
Kernel optimization in discriminant analysis.IEEE Trans Pattern Anal Mach Intell. 2011 Mar;33(3):631-8. doi: 10.1109/TPAMI.2010.173. IEEE Trans Pattern Anal Mach Intell. 2011. PMID: 20820072 Free PMC article.
-
KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition.IEEE Trans Pattern Anal Mach Intell. 2005 Feb;27(2):230-44. doi: 10.1109/TPAMI.2005.33. IEEE Trans Pattern Anal Mach Intell. 2005. PMID: 15688560
-
A framework for optimal kernel-based manifold embedding of medical image data.Comput Med Imaging Graph. 2015 Apr;41:93-107. doi: 10.1016/j.compmedimag.2014.06.001. Epub 2014 Jun 9. Comput Med Imaging Graph. 2015. PMID: 25008538 Review.
Cited by
-
Hierarchical recognition scheme for human facial expression recognition systems.Sensors (Basel). 2013 Dec 5;13(12):16682-713. doi: 10.3390/s131216682. Sensors (Basel). 2013. PMID: 24316568 Free PMC article.
-
Robust facial expression recognition via compressive sensing.Sensors (Basel). 2012;12(3):3747-61. doi: 10.3390/s120303747. Epub 2012 Mar 21. Sensors (Basel). 2012. PMID: 22737035 Free PMC article.
-
A high precision feature based on LBP and Gabor theory for face recognition.Sensors (Basel). 2013 Apr 3;13(4):4499-513. doi: 10.3390/s130404499. Sensors (Basel). 2013. PMID: 23552103 Free PMC article.
-
Session Recommendation via Recurrent Neural Networks over Fisher Embedding Vectors.Sensors (Basel). 2019 Aug 10;19(16):3498. doi: 10.3390/s19163498. Sensors (Basel). 2019. PMID: 31405108 Free PMC article.
-
Block-Diagonal Constrained Low-Rank and Sparse Graph for Discriminant Analysis of Image Data.Sensors (Basel). 2017 Jun 22;17(7):1475. doi: 10.3390/s17071475. Sensors (Basel). 2017. PMID: 28640206 Free PMC article.
References
-
- Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG. Emotion recognition in human-computer interaction. IEEE Signal Proc. Mag. 2001;18:32–80.
-
- Tian Y, Kanade T, Cohn J. Handbook of Face Recognition. Springer; Berlin, Germany: 2005. Facial expression analysis; pp. 247–275.
-
- Viola P, Jones M. Robust real-time face detection. Int. J. Comput. Vis. 2004;57:137–154.
-
- Turk MA, Pentland AP. Face recognition using eigenfaces. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Maui, HI, USA. 3–6 June 1991; pp. 586–591.
-
- Belhumeur PN, Hespanha JP, Kriegman DJ. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997;19:711–720.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous