Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices
- PMID: 2216768
- PMCID: PMC332309
- DOI: 10.1093/nar/18.19.5743
Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices
Abstract
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.
Similar articles
-
Physicochemical studies of the d(G3T4G3)*d(G3A4G3).d(C3T4C3) triple helix.J Biol Chem. 1995 Mar 31;270(13):7295-303. doi: 10.1074/jbc.270.13.7295. J Biol Chem. 1995. PMID: 7706270
-
Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix.Biochemistry. 1991 Jun 25;30(25):6081-8. doi: 10.1021/bi00239a001. Biochemistry. 1991. PMID: 2059618
-
UV spectroscopic identification and thermodynamic analysis of protonated third strand deoxycytidine residues at neutrality in the triplex d(C(+)-T)6:[d(A-G)6.d(C-T)6]; evidence for a proton switch.Nucleic Acids Res. 1995 Jul 25;23(14):2692-705. doi: 10.1093/nar/23.14.2692. Nucleic Acids Res. 1995. PMID: 7651830 Free PMC article.
-
Triple helix formation and homologous strand exchange in pyrene-labeled oligonucleotides.Biochemistry. 1997 Dec 2;36(48):14836-44. doi: 10.1021/bi971710t. Biochemistry. 1997. PMID: 9398205
-
Unraveling the structure and biological functions of RNA triple helices.Wiley Interdiscip Rev RNA. 2020 Nov;11(6):e1598. doi: 10.1002/wrna.1598. Epub 2020 May 22. Wiley Interdiscip Rev RNA. 2020. PMID: 32441456 Free PMC article. Review.
Cited by
-
Solvent, pH, and Ionic Effects on the Binding of Single-Stranded DNA by Circular Oligodeoxynucleotides.Bioorg Med Chem Lett. 1994 Apr 21;4(8):965-970. doi: 10.1016/S0960-894X(01)80664-8. Bioorg Med Chem Lett. 1994. PMID: 27840561 Free PMC article.
-
6-Oxocytidine a novel protonated C-base analogue for stable triple helix formation.Nucleic Acids Res. 1995 Sep 11;23(17):3465-72. doi: 10.1093/nar/23.17.3465. Nucleic Acids Res. 1995. PMID: 7567457 Free PMC article.
-
Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix.Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6653-7. doi: 10.1073/pnas.89.14.6653. Proc Natl Acad Sci U S A. 1992. PMID: 1321445 Free PMC article.
-
Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA.Nucleic Acids Res. 1996 Nov 1;24(21):4273-80. doi: 10.1093/nar/24.21.4273. Nucleic Acids Res. 1996. PMID: 8932383 Free PMC article.
-
Triplex technology in studies of DNA damage, DNA repair, and mutagenesis.Biochimie. 2011 Aug;93(8):1197-208. doi: 10.1016/j.biochi.2011.04.001. Epub 2011 Apr 11. Biochimie. 2011. PMID: 21501652 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources