Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector
- PMID: 22174877
- PMCID: PMC3235158
- DOI: 10.1371/journal.pone.0028719
Efficient conversion of astrocytes to functional midbrain dopaminergic neurons using a single polycistronic vector
Abstract
Direct cellular reprogramming is a powerful new tool for regenerative medicine. In efforts to understand and treat Parkinson's Disease (PD), which is marked by the degeneration of dopaminergic neurons in the midbrain, direct reprogramming provides a valuable new source of these cells. Astrocytes, the most plentiful cells in the central nervous system, are an ideal starting population for the direct generation of dopaminergic neurons. In addition to their potential utility in cell replacement therapies for PD or in modeling the disease in vitro, astrocyte-derived dopaminergic neurons offer the prospect of direct in vivo reprogramming within the brain. As a first step toward this goal, we report the reprogramming of astrocytes to dopaminergic neurons using three transcription factors - ASCL1, LMX1B, and NURR1 - delivered in a single polycistronic lentiviral vector. The process is efficient, with 18.2±1.5% of cells expressing markers of dopaminergic neurons after two weeks. The neurons exhibit expression profiles and electrophysiological characteristics consistent with midbrain dopaminergic neurons, notably including spontaneous pacemaking activity, stimulated release of dopamine, and calcium oscillations. The present study is the first demonstration that a single vector can mediate reprogramming to dopaminergic neurons, and indicates that astrocytes are an ideal starting population for the direct generation of dopaminergic neurons.
Conflict of interest statement
Figures




References
-
- Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson's disease. Mt Sinai J Med. 2011;78:126–158. - PubMed
-
- Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med. 2001;344:710–719. - PubMed
-
- Hagell P, Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol. 2001;60:741–752. - PubMed
-
- Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science. 1990;247:574–577. - PubMed
-
- Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003;54:403–414. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials