Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Aug;36(4):953-6.
doi: 10.1016/0091-3057(90)90105-q.

Pentobarbital attenuates stress-induced increases in noradrenaline release in specific brain regions of rats

Affiliations

Pentobarbital attenuates stress-induced increases in noradrenaline release in specific brain regions of rats

Y Ida et al. Pharmacol Biochem Behav. 1990 Aug.

Abstract

To examine whether anxiolytic action of drugs acting at the GABA/BZD-chloride channel complex may be related to the brain noradrenergic system, we investigated the effect of pentobarbital, a typical barbiturate which has potent GABA modulating properties, on increased NA release in nine brain regions of stressed rats. Pentobarbital (10 and 25 mg/kg) was injected IP 65 min before sacrifice (5 min before one-hour immobilization stress). Levels of 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO4), the major metabolite of brain noradrenaline (NA), and of plasma corticosterone, were fluorometrically determined. Pentobarbital treatment by itself increased MHPG-SO4 levels in the thalamus, locus coeruleus (LC) region, midbrain and basal ganglia of nonstressed rats. Stress produced increases in MHPG-SO4 levels in all brain regions examined and elevation of plasma corticosterone levels. Pentobarbital attenuated, in a dose-dependent manner, stress-induced increases in MHPG-SO4 levels in the hypothalamus, thalamus, anterior cerebral cortex, LC region and basal ganglia and also attenuated the stress-induced elevation of plasma corticosterone levels. These data suggest that pentobarbital can attenuate both stress-induced increases in NA release in specific brain regions as well as activation of the hypothalamo-pituitary-adrenocortical system. These attenuating effects may be related to the anxiolytic action of barbiturates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources