Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Jun;26(6):1166-73.
doi: 10.1038/leu.2011.389. Epub 2011 Dec 19.

Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies?

Affiliations
Review

Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies?

M Z Ratajczak et al. Leukemia. 2012 Jun.

Abstract

Although regenerative medicine is searching for pluripotent stem cells that could be employed for therapy, various types of more differentiated adult stem and progenitor cells are in meantime being employed in clinical trials to regenerate damaged organs (for example, heart, kidney or neural tissues). It is striking that, for a variety of these cells, the currently observed final outcomes of cellular therapies are often similar. This fact and the lack of convincing documentation for donor-recipient chimerism in treated tissues in most of the studies indicates that a mechanism other than transdifferentiation of cells infused systemically into peripheral blood or injected directly into damaged organs may have an important role. In this review, we will discuss the role of (i) growth factors, cytokines, chemokines and bioactive lipids and (ii) microvesicles (MVs) released from cells employed as cellular therapeutics in regenerative medicine. In particular, stem cells are a rich source of these soluble factors and MVs released from their surface may deliver RNA and microRNA into damaged organs. Based on these phenomena, we suggest that paracrine effects make major contributions in most of the currently reported positive results in clinical trials employing adult stem cells. We will also present possibilities for how these paracrine mechanisms could be exploited in regenerative medicine to achieve better therapeutic outcomes. This approach may yield critical improvements in current cell therapies before true pluripotent stem cells isolated in sufficient quantities from adult tissues and successfully expanded ex vivo will be employed in the clinic.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources