Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012:819:575-94.
doi: 10.1007/978-1-61779-465-0_34.

Molecular-level simulation of pandemic influenza glycoproteins

Affiliations

Molecular-level simulation of pandemic influenza glycoproteins

Rommie E Amaro et al. Methods Mol Biol. 2012.

Abstract

Computational simulation of pandemic diseases provides important insight into many disease features that may benefit public health. This is especially true for the influenza virus, a continuing global pandemic threat. Molecular or atomic-level investigation of influenza has predominantly focused on the two major virus glycoproteins, neuraminidase (NA) and hemagglutinin (HA). In this chapter, we walk the readers through major considerations for studying pandemic influenza glycoproteins, from choosing the most useful choice of system(s) to avoiding common pitfalls in experimental design and execution. While a brief discussion of several potential simulation and docking techniques is presented, we emphasize molecular dynamics (MD) and Brownian dynamics (BD) simulation techniques and molecular docking, within the context of biologically outstanding questions in influenza research.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Colman P. Structure-Based Drug Discovery: An Overview. Royal Society of Chemistry. 2006
    1. Itzstein Mv, Wu W-Y, Kok GB, Pegg MS, Dyason JC, Jin B, Phan TV, Smythe ML, White HF, Oliver SW, Colman PM, Varghese JN, Ryan DM, Woods JM, Bethell RC, Hotham VJ, Cameron JM, Penn CR. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993;363:418–423. - PubMed
    1. Newhouse EI, Xu D, Markwick PRL, Amaro RE, Pao HC, Wu KJ, Alam M, McCammon JA, Li WW. Mechanism of Glycan Receptor Recognition and Specificity Switch for Avian, Swine, and Human Adapted Influenza Virus Hemagglutinins: A Molecular Dynamics Perspective. Journal of the American Chemical Society. 2009;131:17430–17442. - PMC - PubMed
    1. Amaro RE, Minh DD, Cheng LS, Lindstrom WM, Jr, Olson AJ, Lin JH, Li WW, McCammon JA. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc. 2007;129:7764–7765. - PubMed
    1. Udommaneethanakit T, Rungrotmongkol T, Bren U, Frecer V, Stanislav M. Dynamic Behavior of Avian Influenza A Virus Neuraminidase Subtype H5N1 in Complex with Oseltamivir, Zanamivir, Peramivir, and Their Phosphonate Analogues. Journal of Chemical Information and Modeling. 2009;49:2323–2332. - PubMed

Publication types

MeSH terms

Substances