G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function
- PMID: 22183719
- PMCID: PMC3382322
- DOI: 10.1113/jphysiol.2011.222794
G protein-coupled receptor signalling in the cardiac nuclear membrane: evidence and possible roles in physiological and pathophysiological function
Abstract
G protein-coupled receptors (GPCRs) play key physiological roles in numerous tissues, including the heart, and their dysfunction influences a wide range of cardiovascular diseases. Recently, the notion of nuclear localization and action of GPCRs has become more widely accepted. Nuclear-localized receptors may regulate distinct signalling pathways, suggesting that the biological responses mediated by GPCRs are not solely initiated at the cell surface but may result from the integration of extracellular and intracellular signalling pathways. Many of the observed nuclear effects are not prevented by classical inhibitors that exclusively target cell surface receptors, presumably because of their structures, lipophilic properties, or affinity for nuclear receptors. In this topical review, we discuss specifically how angiotensin-II, endothelin, β-adrenergic and opioid receptors located on the nuclear envelope activate signalling pathways, which convert intracrine stimuli into acute responses such as generation of second messengers and direct genomic effects, and thereby participate in the development of cardiovascular disorders.
Figures


References
-
- Amitai G, Dassa B, Pietrokovski S. Protein splicing of inteins with atypical glutamine and aspartate C-terminal residues. J Biol Chem. 2004;279:3121–3131. - PubMed
-
- Ardail D, Debon A, Perret-Vivancos C, Biol-N’Garagba MC, Krantic S, Lobie PE, Morel G. Growth hormone internalization in mitochondria decreases respiratory chain activity. Neuroendocrinology. 2010;91:16–26. - PubMed
-
- Ashton AW, Cheng Y, Helisch A, Ware JA. Thromboxane A2 receptor agonists antagonize the proangiogenic effects of fibroblast growth factor-2: role of receptor internalization, thrombospondin-1, and αvbβ3. Circ Res. 2004;94:735–742. - PubMed
-
- Baker KM, Chernin MI, Schreiber T, Sanghi S, Haiderzaidi S, Booz GW, Dostal DE, Kumar R. Evidence of a novel intracrine mechanism in angiotensin II-induced cardiac hypertrophy. Regul Pept. 2004;120:5–13. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources