Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb;153(2):485-493.
doi: 10.1016/j.pain.2011.11.013. Epub 2011 Dec 19.

Immune conditions associated with CD4+ T effector-induced opioid release and analgesia

Affiliations

Immune conditions associated with CD4+ T effector-induced opioid release and analgesia

Jérôme Boué et al. Pain. 2012 Feb.

Abstract

Effector CD4(+) T lymphocytes generated in response to antigens produce endogenous opioids. Thus, in addition to their critical role in host defenses against pathogens, effector CD4(+) T lymphocytes contribute to relieving inflammatory pain. In this study, we investigated mechanisms of opioid release by antigen-experienced effector CD4(+) T cells that leave draining lymph nodes and come back into the inflammatory site. Effector antigen-primed CD4(+) T lymphocytes generated in vitro were intravenously injected into nude mice previously immunized with either cognate or irrelevant antigens in complete Freund adjuvant (CFA). CFA-induced mechanical hyperalgesia was only reduced in mice immunized with cognate antigen. Thus, antinociceptive activity of effector CD4(+) T cells requires the presence of the antigen for which they are specific within the inflammatory site. Accordingly, analgesia was inhibited by neutralizing cognate T cell receptor-mediated interaction between effector CD4(+) T lymphocytes and antigen-presenting cells at the site of inflammation. Analgesia was observed by transferring effector CD4(+) T lymphocytes with Th1 or Th2 phenotype, suggesting that antinociceptive activity is a fundamental property of effector CD4(+) T lymphocytes irrespective of their effector functions. Based on the use of agonists and antagonists selective for each of the opioid receptor subclasses, we showed that analgesia induced by T cell-derived opioids is elicited via activation of δ-type opioid receptors in the periphery. Thus, the antinociceptive activity is a fundamental property associated with the effector phase of adaptive immunity, which is driven by recognition of the cognate antigen by effector CD4(+) T lymphocytes at the inflammatory site.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267-284.
    1. Benard A, Boue J, Chapey E, Jaume M, Gomes B, Dietrich G. Delta opioid receptors mediate chemotaxis in bone marrow-derived dendritic cells. J Neuroimmunol. 2008;197:21-28.
    1. Benard A, Cavailles P, Boue J, Chapey E, Bayry J, Blanpied C, Meyer N, Lamant L, Kaveri SV, Brousset P, Dietrich G. Mu-opioid receptor is induced by IL-13 within lymph nodes from patients with Sezary syndrome. J Invest Dermatol. 2010;130:1337-1344.
    1. Binder W, Mousa SA, Sitte N, Kaiser M, Stein C, Schafer M. Sympathetic activation triggers endogenous opioid release and analgesia within peripheral inflamed tissue. Eur J Neurosci. 2004;20:92-100.
    1. Boue J, Blanpied C, Brousset P, Vergnolle N, Dietrich G. Endogenous opioid-mediated analgesia is dependent on adaptive T cell response in mice. J Immunol. 2011;186:5078-5084.

Publication types

MeSH terms