Reporting of quantitative oxygen mapping in EPR imaging
- PMID: 22188976
- PMCID: PMC3278905
- DOI: 10.1016/j.jmr.2011.11.013
Reporting of quantitative oxygen mapping in EPR imaging
Abstract
Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO(2) values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO(2) map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO(2) maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T(2)(∗)) limit the resolution since the signal decays by exp(-t(p)/T(2)(∗)) where the delay time after excitation pulse, t(p), is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO(2) levels since the linewidths are proportionately affected by pO(2). A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO(2) level. In addition, the pO(2) values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO(2) levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO(2) levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO(2) uncertainties are necessary to interpret digitally processed pO(2) illustrations.
Published by Elsevier Inc.
Figures










Similar articles
-
3-Carboxy-2,2,5,5-tetramethyl-pyrrolidinyl-N-oxyl.2008 Apr 30 [updated 2008 Jun 9]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2008 Apr 30 [updated 2008 Jun 9]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 20641530 Free Books & Documents. Review.
-
3-Carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidinyl-N-oxyl.2008 Apr 30 [updated 2008 Jun 9]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2008 Apr 30 [updated 2008 Jun 9]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 20641525 Free Books & Documents. Review.
-
15N-Labeled 4-oxo-2,2,6,6-tetramethyl-piperidine-1-oxyl.2008 Apr 30 [updated 2008 Jun 9]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. 2008 Apr 30 [updated 2008 Jun 9]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. PMID: 20641553 Free Books & Documents. Review.
-
In vivo multisite oximetry using EPR-NMR coimaging.J Magn Reson. 2010 Nov;207(1):69-77. doi: 10.1016/j.jmr.2010.08.011. Epub 2010 Aug 24. J Magn Reson. 2010. PMID: 20850361 Free PMC article.
-
Electron paramagnetic resonance imaging of tumor pO₂.Radiat Res. 2012 Apr;177(4):376-86. doi: 10.1667/rr2622.1. Epub 2012 Feb 14. Radiat Res. 2012. PMID: 22332927 Review.
Cited by
-
Dynamic Quantum Sensing of Paramagnetic Species Using Nitrogen-Vacancy Centers in Diamond.ACS Sens. 2020 Mar 27;5(3):703-710. doi: 10.1021/acssensors.9b01903. Epub 2020 Jan 8. ACS Sens. 2020. PMID: 31867948 Free PMC article.
-
In vivo electron paramagnetic resonance oximetry and applications in the brain.Med Gas Res. 2017 Mar 30;7(1):56-67. doi: 10.4103/2045-9912.202911. eCollection 2017 Jan-Mar. Med Gas Res. 2017. PMID: 28480033 Free PMC article. Review.
-
Accelerated 4D quantitative single point EPR imaging using model-based reconstruction.Magn Reson Med. 2015 Apr;73(4):1692-701. doi: 10.1002/mrm.25282. Epub 2014 May 6. Magn Reson Med. 2015. PMID: 24803382 Free PMC article.
-
Functional electron paramagnetic resonance imaging of ischemic rat heart: Monitoring of tissue oxygenation and pH.Magn Reson Med. 2016 Jul;76(1):350-8. doi: 10.1002/mrm.25867. Epub 2015 Aug 24. Magn Reson Med. 2016. PMID: 26301868 Free PMC article.
-
In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques.Redox Biol. 2016 Aug;8:226-42. doi: 10.1016/j.redox.2015.10.007. Epub 2015 Nov 14. Redox Biol. 2016. PMID: 26827126 Free PMC article. Review.
References
-
- Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the utrerine cervix. Canc Res. 1996;56:4509–4515. - PubMed
-
- Hockel M, Vaupel P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Canc Inst. 2001;93:266–276. - PubMed
-
- Brown JM. Tumor Hypoxia, Drug-Resistance, and Metastases. J Nat Canc Inst. 1990;82:338–339. - PubMed
-
- Liu RS, Chou TK, Chang CH, Wu CY, Chang CW, Chang TJ, Wang SJ, Lin WJ, Wang HE. Biodistribution, pharmacokinetics and PET Imaging of [(18)F]FMISO, [(18)F] FDG and [(18)F]FAc in a sarcoma- and inflammation-bearing mouse model. Nucl Med Biol. 2009;36:305–312. - PubMed
-
- Matsumoto K, English S, Yoo J, Yamada K, Devasahayam N, Cook JA, Mitchell JB, Subramanian S, Krishna MC. Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magn Reson Med. 2004;52:885–892. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources