Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb;88(2):263-70.
doi: 10.1016/j.mimet.2011.12.005. Epub 2011 Dec 19.

Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater

Affiliations

Quantitative real-time PCR (qPCR) detection chemistries affect enumeration of the Dehalococcoides 16S rRNA gene in groundwater

Janet K Hatt et al. J Microbiol Methods. 2012 Feb.

Abstract

Quantitative real-time PCR (qPCR) commonly uses the fluorogenic 5' nuclease (TaqMan) and SYBR Green I (SG) detection chemistries to enumerate biomarker genes. Dehalococcoides (Dhc) are keystone bacteria for the detoxification of chlorinated ethenes, and the Dhc 16S ribosomal RNA (rRNA) gene serves as a biomarker for monitoring reductive dechlorination in contaminated aquifers. qPCR enumeration of Dhc biomarker genes using the TaqMan or SG approach with the same primer set yielded linear calibration curves over a seven orders of magnitude range with similar amplification efficiencies. The TaqMan assay discriminates specific from nonspecific amplification observed at low template concentrations with the SG assay, and had a 10-fold lower limit of detection of ~3 copies per assay. When applied to Dhc pure cultures and Dhc-containing consortia, both detection methods enumerated Dhc biomarker genes with differences not exceeding 3-fold. Greater variability was observed with groundwater samples, and the SG chemistry produced false-positive results or yielded up to 6-fold higher biomarker gene abundances compared to the TaqMan method. In most cases, the apparent error associated with SG detection resulted from quantification of nonspecific amplification products and was more pronounced with groundwater samples that had low biomarker concentrations or contained PCR inhibitors. Correction of the apparent error using post-amplification melting curve analysis produced 2 to 21-fold lower abundance estimates; however, gel electrophoretic analysis of amplicons demonstrated that melting curve analysis was insufficient to recognize all nonspecific amplification. Upon exclusion of nonspecific amplification products identified by combined melting curve and electrophoretic amplicon analyses, the SG method produced false-negative results compared to the TaqMan method. To achieve sensitive and accurate quantification of Dhc biomarker genes in environmental samples (e.g., groundwater) and avoid erroneous conclusions, the analysis should rely on TaqMan detection chemistry, unless additional analyses validate the results obtained with the SG approach.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources