Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2011 Dec 27;13(1):82.
doi: 10.1186/1532-429X-13-82.

Cardiovascular magnetic resonance for the assessment of patients undergoing transcatheter aortic valve implantation: a pilot study

Affiliations
Comparative Study

Cardiovascular magnetic resonance for the assessment of patients undergoing transcatheter aortic valve implantation: a pilot study

Alessio La Manna et al. J Cardiovasc Magn Reson. .

Abstract

Background: Before trans-catheter aortic valve implantation (TAVI), assessment of cardiac function and accurate measurement of the aortic root are key to determine the correct size and type of the prosthesis. The aim of this study was to compare cardiovascular magnetic resonance (CMR) and trans-thoracic echocardiography (TTE) for the assessment of aortic valve measurements and left ventricular function in high-risk elderly patients submitted to TAVI.

Methods: Consecutive patients with severe aortic stenosis and contraindications for surgical aortic valve replacement were screened from April 2009 to January 2011 and imaged with TTE and CMR.

Results: Patients who underwent both TTE and CMR (n = 49) had a mean age of 80.8 ± 4.8 years and a mean logistic EuroSCORE of 14.9 ± 9.3%. There was a good correlation between TTE and CMR in terms of annulus size (R2 = 0.48, p < 0.001), left ventricular outflow tract (LVOT) diameter (R2 = 0.62, p < 0.001) and left ventricular ejection fraction (LVEF) (R2 = 0.47, p < 0.001) and a moderate correlation in terms of aortic valve area (AVA) (R2 = 0.24, p < 0.001). CMR generally tended to report larger values than TTE for all measurements. The Bland-Altman test indicated that the 95% limits of agreement between TTE and CMR ranged from -5.6 mm to + 1.0 mm for annulus size, from -0.45 mm to + 0.25 mm for LVOT, from -0.45 mm2 to + 0.25 mm2 for AVA and from -29.2% to 13.2% for LVEF.

Conclusions: In elderly patients candidates to TAVI, CMR represents a viable complement to transthoracic echocardiography.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Aortic valve area measurement by trans-thoracic echocardiography (TTE) and cardiovascular magnetic resonance (CMR). Aortic valve area measured by continuity equation TTE approach: Left ventricular outflow tract (LVOT) diameter (A); transaortic peak velocity (B); aortic velocity-time integral (C). Oblique sagittal view of the aortic outflow tract, with the CMR slice position indicated by three white lines orthogonal to the stenotic jet (D). Oblique transaxial view of the aortic outflow tract, with CMR slice position indicated by three white lines (E). Cross-sectional view of a severely stenotic aortic valve; the white line denotes the aortic valve area (F).
Figure 2
Figure 2
Study flow chart. Reasons for excluding patients from cardiovascular magnetic resonance or trans-thoracic echocardiography.
Figure 3
Figure 3
Scattered plot of trans-thoracic echocardiography (TTE) and cardiovascular magnetic resonance (CMR). Correlation analysis of aortic annulus (A), left ventricular outflow tract (LVOT) (B), left ventricular ejection fraction (LVEF) (C) and aortic valve area (AVA) (D) measured by TTE and CMR.
Figure 4
Figure 4
Agreement of trans-thoracic echocardiography (TTE) and cardiovascular magnetic resonance (CMR) by Bland-Altman analysis. Bland-Altman analysis for aortic annulus (A), left ventricular outflow tract (LVOT) (B), left ventricular ejection fraction (LVEF) (C) and aortic valve area (AVA) (D) measured by TTE and CMR.

Similar articles

Cited by

References

    1. Lindroos M, Kupari M, Heikkilä J, Tilvis R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993;21:1220–1225. doi: 10.1016/0735-1097(93)90249-Z. - DOI - PubMed
    1. Zajarias A, Cribier AG. Outcome and saphety of percutaneous valve replacement. J Am Coll Cardiol. 2009;53:1829–1836. doi: 10.1016/j.jacc.2008.11.059. - DOI - PubMed
    1. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S. PARTNER Trial Investigators. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–1607. doi: 10.1056/NEJMoa1008232. - DOI - PubMed
    1. Delgado V, Ewe SH, Ng AC, Van der Kley F, Ajmone Marsan N, Schuijf JD, Schalij MJ, Bax JJ. Multimodality imaging in transcatheter aortic valve implantation: key steps to assess procedural feasibility. Eurointervention. 2010;6(5):643–652. doi: 10.4244/EIJV6I5A107. - DOI - PubMed
    1. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quiñones M. American Society of Echocardiography; European Association of Echocardiography. Echocardiographic Assessment of Valve Stenosis: EAE/ASE. Recommendations for Clinical Practice. Journal of the American Society of Echocardiography. 2009;22(1):1–23. doi: 10.1016/j.echo.2008.11.029. - DOI - PubMed

Publication types

MeSH terms