Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012;12(4):286-311.
doi: 10.2174/156802612799078847.

Medicinal chemistry of indolylglyoxylamide GABAA/BzR high affinity ligands: identification of novel anxiolytic/non sedative agents

Affiliations
Review

Medicinal chemistry of indolylglyoxylamide GABAA/BzR high affinity ligands: identification of novel anxiolytic/non sedative agents

Silvia Salerno et al. Curr Top Med Chem. 2012.

Abstract

The classical benzodiazepines (Bz) constitute a well-known class of therapeutics displaying hypnotic, anxiolytic and anticonvulsant effects acting upon a specific binding site (BzR) belonging to the GABAA receptor complex. Their usefulness, however, is limited by a broad range of side effects; consequently the fact that the action of GABA with the receptor complex could be allosterically modulated by a wide variety of chemical entities, made the Bz binding site, from late eighties to nowdays, the target of extensive research programmes directed to the identification of new ligands displaying varying degrees of affinity- and efficacy-selectivity for the different GABAA/BzR-subtypes. The principal aim has been to discover ideal sedative-hypnotic agents (selective 1 agonists), anxiolytic agents (selective 2/ 3 agonists), or cognitive enhancers (selective 5 inverse agonists). In this connection, an important contribution in the field of GABAA/BzR ligands was made by the research group directed by Professor Antonio Da Settimo at the University of Pisa. The purpose of this review is therefore to describe the studies, performed from early '80s, on the several classes of BzR ligands developed featuring the indol-3-ylglyoxyl scaffold. All the compounds reported have been summarized on the basis of their main chemical structural features, focusing attention on their SARs, which determined the affinity profiles or efficacy-selectivity. Moreover, the biological studies performed within each class of compounds allowed the identification of new derivatives exhibiting an anxiolytic/nonsedative profile, either in vitro (full 2 agonism and 1 partial agonism/ antagonism) and in vivo (anxiolytic/nonsedative activity in mice).

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources