Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec 28:11:184.
doi: 10.1186/1471-2229-11-184.

Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips

Affiliations

Concentration-dependent effects of narciclasine on cell cycle progression in Arabidopsis root tips

Xiaofan Na et al. BMC Plant Biol. .

Abstract

Background: Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. NCS has inhibitory effects on a broad range of biological activities and thus has various potential practical applications. Here we examine how NCS represses plant root growth.

Results: Results showed that the inhibition of NCS on cell division in Arabidopsis root tips and its effects on cell differentiation are concentration-dependent; at low concentrations (0.5 and 1.0 μM) NCS preferentially targets mitotic cell cycle specific/cyclin complexes, whereas at high concentration (5.0 μM) the NCS-stimulated accumulation of Kip-related proteins (KRP1 and RP2) affects the CDK complexes with a role at both G1/S and G2/M phases.

Conclusions: Our findings suggest that NCS modulates the coordination between cell division and differentiation in Arabidopsis root tips and hence affects the postembryonic development of Arabidopsis seedlings.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effects of NCS on the post-embryonic development of Arabidopsis roots. (A) Inhibitory effect of NCS on radicle protrusion during seed germination. (B) Wild type Arabidopsis seedling at 10 days after stratification grown on medium containing 0 or 5.0 μM NCS. Bar = 5 mm. (C) A close-up view of the whole plant in (B) treated with 5.0 μM NCS. Bar = 1 mm. (D) NCS inhibits primary root elongation. Root growth time course was measured after transferring 3-day-old Arabidopsis seedlings to NCS-containing medium. (E) NCS affects the lateral root density after exposing to NCS for 7 days. Data shown in (A), (D), (E) are means ± SD obtained from three independent experiments (n ≧ 20, P < 0.01). (F) Effects of NCS on cell expansion and cell division of meristematic cells. Arrows in the control panel showed the dividing cells. Bars = 50 μm in all panels. Differential interference contrast (DIC) images were captured using the transmission light detector of the confocal microscope.
Figure 2
Figure 2
Effects of NCS on cell division and cell differentiation in Arabidopsis root tips. (A) NCS affects the differentiation of xylem pole pericycle cells in the root tip. Bar = 200 μm. (B) The development of root hairs in Arabidopsis primary roots was affected by NCS. Data shown are means ± SD obtained from three independent experiments (n ≧ 20). (C) CDKA;1::uidA promoter activity after NCS treatment for 4 days. Bar = 200 μm. (D) Expression of the mitotic marker CYCB1;1::uidA after 2 days NCS treatment. Bar = 50 μm.
Figure 3
Figure 3
Using a tobacco cell suspension to determine the effects of NCS on cell cycle. (A) The phenotype of 7 days after germination (DAG) tobacco seedlings grown on 0.5 μM NCS. Bar = 5 mm. (B) Primary root length of 7 DAG tobacco seedlings was inhibited by NCS. Values are means ± SD of three independent experiments (n ≧ 20). (C) Images of BY-2 cells treated with NCS and depletion of 2,4-D for 2 days. Bar = 50 μm. (D) Flow cytometric analysis of the cell cycle. (E) qRT-PCR detection of CYCD3;1, Histone H4, CYCA1;1 and CYCB1;1 mRNA after NCS-treatment in synchronized tobacco BY-2 cells. (F) E2Fa and RBR transcription level in BY-2 cells after NCS-treatment. The relative expression is normalized to ACTIN2. Data shown were the means ± S.D of three independent experiments.
Figure 4
Figure 4
qRT-PCR analysis of the expression of core cell cycle genes in Arabidopsis root tips. (A) qRT-PCR results showing the effects of NCS on expression of CDKA;1, CYCD3;1, CYCD3;2, E2Fa, CDKB1;1 and CDKB2;1 in Arabidopsis root tips. (B) The relative expression (normalized to PP2A) of DNA polymerase α and CDC6a after NCS treatment for indicated times. Data shown in (A) and (B) are means ± SD of three independent experiments.
Figure 5
Figure 5
Analysis of KRP1 and 2 expression and CDK activity after NCS treatment. (A) qRT-PCR analysis of KRP1 and KRP2 expression relative to PP2A. (B) Immunoblot analysis of NCS-treated Arabidopsis roots using an anti-KRP2 antibody. Coomassie Brilliant Blue staining of the electrophoresis gel was used as a loading control. (C) P10CKS1At-associated kinase activity in NCS-treated roots. Autoradiogram showing typical results of CDK activity assays with histone as the substrate. Coomassie Brilliant Blue staining of the electrophoresis gel with histone was used as a control for equal substrate quantity per phosphorylation reaction. (D) Relative quantification of three independent kinase activity measurements as depicted in (C). The control was arbitrarily set at 100%. Data shown in (A) and (D) are means ± SD of three independent experiments.

Similar articles

Cited by

References

    1. Coffman J. Cell cycle development. Dev Cell. 2004;6:321–327. doi: 10.1016/S1534-5807(04)00067-X. - DOI - PubMed
    1. Gutierrez C, Ramirez-Parra E, Castellano MM, del Pozo JC. G1 to S transition: more than a cell cycle engine switch. Curr Opin Plant Biol. 2002;5:480–486. doi: 10.1016/S1369-5266(02)00301-1. - DOI - PubMed
    1. Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Plant Biol. 2002;14:684–691. - PubMed
    1. Cooper S, Shayman JA. Revisiting retinoblastoma protein phosphorylation during the mammalian cell cycle. Cell Mol Life Sci. 2001;58:580–595. doi: 10.1007/PL00000883. - DOI - PMC - PubMed
    1. De Veylder L, Joubès J, Inzé D. Plant cell cycle transitions. Curr Opin Plant Biol. 2003;6:536–543. doi: 10.1016/j.pbi.2003.09.001. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources