Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;8(12):e1001147.
doi: 10.1371/journal.pmed.1001147. Epub 2011 Dec 20.

Sex-specific immunization for sexually transmitted infections such as human papillomavirus: insights from mathematical models

Affiliations

Sex-specific immunization for sexually transmitted infections such as human papillomavirus: insights from mathematical models

Johannes A Bogaards et al. PLoS Med. 2011 Dec.

Abstract

Background: Sex-specific differences regarding the transmissibility and the course of infection are the rule rather than the exception in the epidemiology of sexually transmitted infections (STIs). Human papillomavirus (HPV) provides an example: disease outcomes differ between men and women, as does the potential for transmission to the opposite sex. HPV vaccination of preadolescent girls was recently introduced in many countries, and inclusion of boys in the vaccination programs is being discussed. Here, we address the question of whether vaccinating females only, males only, or both sexes is the most effective strategy to reduce the population prevalence of an STI like HPV.

Methods and findings: We use a range of two-sex transmission models with varying detail to identify general criteria for allocating a prophylactic vaccine between both sexes. The most effective reduction in the population prevalence of infection is always achieved by single-sex vaccination; vaccinating the sex with the highest prevaccine prevalence is the preferred strategy in most circumstances. Exceptions arise only when the higher prevaccine prevalence is due to a substantially lower rate of natural immunity, or when natural immunity is lifelong, and a prolonged duration of infectiousness coincides with increased transmissibility. Predictions from simple models were confirmed in simulations based on an elaborate HPV transmission model. Our analysis suggests that relatively inefficient genital transmission from males to females might render male vaccination more effective in reducing overall infection levels. However, most existing HPV vaccination programs have achieved sufficient coverage to continue with female-only vaccination.

Conclusions: Increasing vaccine uptake among preadolescent girls is more effective in reducing HPV infection than including boys in existing vaccination programs. As a rule, directing prophylactic immunization at the sex with the highest prevaccine prevalence results in the largest reduction of the population prevalence.

PubMed Disclaimer

Conflict of interest statement

CJLMM and JB have received unrestricted research grants from GSK. JB also acted as research consultant for Sanofi Pasteur MSD. MK acted as a research consultant for Sanofi Pasteur MSD and for GSK. The other authors have declared no competing interests.

Figures

Figure 1
Figure 1. The differential impact of sex-specific immunization on the reproduction number and on the prevalence of a heterosexually transmitted infection.
(A) The effect of immunization coverage among females (v f) and males (v m) on the projected reproduction number in a partly vaccinated population Rv. (B) The effect on the equilibrium prevalence of infection among men, I m, and women, I f. Darker colors correspond to lower values; the region where Rv<1 corresponds to I m+I f = 0, i.e., elimination of infection from the heterosexual population. In this example, R 0 = 3.45 and women have both a slower recovery from infection and a lower probability of transmitting infection than men. The largest reduction in the reproduction number is achieved by allocating all vaccine to a single sex; the choice between vaccinating males or females is arbitrary. The largest reduction in the equilibrium prevalence of infection is achieved by allocating all vaccine to females, for any given coverage below the threshold required for elimination.
Figure 2
Figure 2. The immunization coverage in a girls-only vaccination program below which vaccination of boys is more effective in reducing prevalence.
(A) The threshold coverage for combinations of recovery rate αf and αm given equal transmission probabilities β = 0.9. (B) The threshold coverage for combinations of transmission probability βf and βm given equal rates of recovery α = 0.1. Contact rate c = 1 and death rate d = 0.02 deaths per year. The set of parameters for which male vaccination is an attractive option becomes increasingly restricted with higher female immunization coverage. Vaccinating males is rarely attractive if at least 40% coverage has been achieved among females.
Figure 3
Figure 3. The effectiveness of HPV vaccination depends on which sex is being vaccinated and on the heterogeneity in sexual behavior.
(A) The equilibrium prevalence of HPV16 infection in relation to immunization coverage by vaccinating girls only, boys only, or both girls and boys at an equal rate. (B) The equilibrium prevalence of HPV16 infection in relation to female immunization coverage for various assumptions of heterogeneity in sexual behavior. Results in (A) assume three dynamic activity classes plus an age-specific partner preference function. The default parameters were obtained by fitting this model to prevaccine data on HPV16 infection in the Netherlands .
Figure 4
Figure 4. The effectiveness of male-only or female-only HPV vaccination depends on sex-specific differences in viral transmissibility and natural immunity.
(A) The equilibrium prevalence of HPV16 infection in relation to immunization coverage for different assumptions regarding viral transmissibility. (B) The equilibrium prevalence of HPV16 infection in relation to immunization coverage for different assumptions regarding natural immunity. Solid lines represent a strategy of vaccinating preadolescent girls, and dotted lines represent a strategy of vaccinating preadolescent boys. Natural immunity is lost over time at a rate κ (per year). Default parameters, β = 0.8 and κ = 0.04 for both sexes, were obtained by fitting this model to prevaccine data on HPV16 infection in the Netherlands .

Similar articles

Cited by

References

    1. Hethcote HW, Yorke JA. Gonorrhea: transmission dynamics and control. Lecture notes in biomathematics 56. Berlin: Springer-Verlag; 1984. 105 Available: http://www.math.uiowa.edu/ftp/hethcote/lnb56.pdf. Accessed 12 August 2011.
    1. Kretzschmar M, van Duynhoven YT, Severijnen AJ. Modeling prevention strategies for gonorrhea and chlamydia using stochastic network simulations. Am J Epidemiol. 1996;144:306–317. - PubMed
    1. Gray RT, Beagley KW, Timms P, Wilson DP. Modeling the impact of potential vaccines on epidemics of sexually transmitted Chlamydia trachomatis infection. J Infect Dis. 2009;199:1680–1688. - PubMed
    1. Williams BG, Lloyd-Smith JO, Gouws E, Hankins C, Getz WM, et al. The potential impact of male circumcision on HIV in Sub-Saharan Africa. PLoS Med. 2006;3:e262. doi: 10.1371/journal.pmed.0030262. - DOI - PMC - PubMed
    1. Wilson DP, Coplan PM, Wainberg MA, Blower SM. The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics. Proc Natl Acad Sci U S A. 2008;105:9835–9840. - PMC - PubMed

Publication types

MeSH terms

Substances