Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2012 Apr;341(1):59-67.
doi: 10.1124/jpet.111.189035. Epub 2011 Dec 29.

Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice

Affiliations
Comparative Study

Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice

Jin-Sun Park et al. J Pharmacol Exp Ther. 2012 Apr.

Abstract

Microglial activation plays a pivotal role in the pathogenesis of various neurologic disorders, such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. Thus, controlling microglial activation is a promising therapeutic strategy for such brain diseases. In the present study, we found that a ginseng saponin metabolite, compound K [20-O-D-glucopyranosyl-20(S)-protopanaxadiol], inhibited the expressions of inducible nitric-oxide synthase, proinflammatory cytokines, monocyte chemotactic protein-1, matrix metalloproteinase-3, and matrix metalloproteinase-9 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and primary cultured microglia. Subsequent mechanistic studies revealed that compound K suppressed microglial activation via inhibiting reactive oxygen species, mitogen-activated protein kinases, and nuclear factor-κB/activator protein-1 activities with enhancement of heme oxygenase-1/antioxidant response element signaling. To address the anti-inflammatory effects of compound K in vivo, we used two brain disease models of mice: sepsis (systemic inflammation) and cerebral ischemia. Compound K reduced the number of Iba1-positive activated microglia and inhibited the expressions of tumor necrosis factor-α and interleukin-1β in the LPS-induced sepsis brain. Furthermore, compound K reduced the infarct volume of ischemic brain induced by middle cerebral artery occlusion and suppressed microglial activation in the ischemic cortex. The results collectively suggest that compound K is a promising agent for prevention and/or treatment of cerebral ischemia and other neuroinflammatory disorders.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources