Discovery of internalizing antibodies to tumor antigens from phage libraries
- PMID: 22208981
- PMCID: PMC4180867
- DOI: 10.1016/B978-0-12-416039-2.00003-3
Discovery of internalizing antibodies to tumor antigens from phage libraries
Abstract
Phage antibody technology can be used to generate human antibodies to essentially any antigen. Many therapeutic target antigens are cell surface receptors, which can be challenging targets for antibody generation. In addition, for many therapeutic applications, one needs antibodies that not only bind the cell surface receptor but also are internalized into the cell upon binding. This allows use of the antibody to deliver a range of payloads into the cell to achieve a therapeutic effect. In this chapter, we describe how human phage antibody libraries can be selected directly on tumor cell lines to generate antibodies that bind cell surface receptors and which upon binding are rapidly internalized into the cell. Specific protocols show how to (1) directly select cell binding and internalizing antibodies from human phage antibody libraries, (2) screen the phage antibodies in a high-throughput flow cytometry assay for binding to the tumor cell line used for selection, (3) identify the antigen bound by the phage antibody using immunoprecipitation and mass spectrometry, and (4) direct cell binding and internalizing selections to a specific tumor antigen by sequential selection on a tumor cell line followed by selection on yeast displaying the target tumor antigen on the yeast surface.
Copyright © 2012 Elsevier Inc. All rights reserved.
Figures




Similar articles
-
Identification of target and function specific antibodies for effective drug delivery.Methods Mol Biol. 2009;525:145-60, xv. doi: 10.1007/978-1-59745-554-1_7. Methods Mol Biol. 2009. PMID: 19252832
-
Selection of tumor-specific internalizing human antibodies from phage libraries.J Mol Biol. 2000 Sep 1;301(5):1149-61. doi: 10.1006/jmbi.2000.4026. J Mol Biol. 2000. PMID: 10966812
-
High-content analysis of antibody phage-display library selection outputs identifies tumor selective macropinocytosis-dependent rapidly internalizing antibodies.Mol Cell Proteomics. 2014 Dec;13(12):3320-31. doi: 10.1074/mcp.M114.039768. Epub 2014 Aug 22. Mol Cell Proteomics. 2014. PMID: 25149096 Free PMC article.
-
Selection and characterization of cell binding and internalizing phage antibodies.Arch Biochem Biophys. 2012 Oct 15;526(2):107-13. doi: 10.1016/j.abb.2012.05.007. Epub 2012 May 22. Arch Biochem Biophys. 2012. PMID: 22627065 Free PMC article. Review.
-
Considerations on antibody-phage display methodology.Comb Chem High Throughput Screen. 2005 Mar;8(2):117-26. doi: 10.2174/1386207053258532. Comb Chem High Throughput Screen. 2005. PMID: 15777175 Review.
Cited by
-
Targeted drug delivery for cancer therapy: the other side of antibodies.J Hematol Oncol. 2012 Nov 9;5:70. doi: 10.1186/1756-8722-5-70. J Hematol Oncol. 2012. PMID: 23140144 Free PMC article. Review.
-
Discovery of internalizing antibodies to basal breast cancer cells.Protein Eng Des Sel. 2018 Jan 1;31(1):17-28. doi: 10.1093/protein/gzx063. Protein Eng Des Sel. 2018. PMID: 29301020 Free PMC article.
-
Effectiveness of [67Cu]Cu-trastuzumab as a theranostic against HER2-positive breast cancer.Eur J Nucl Med Mol Imaging. 2024 Jun;51(7):2070-2084. doi: 10.1007/s00259-024-06648-3. Epub 2024 Feb 20. Eur J Nucl Med Mol Imaging. 2024. PMID: 38376808
-
Click Chemistry Selectively Activates an Auristatin Protodrug with either Intratumoral or Systemic Tumor-Targeting Agents.ACS Cent Sci. 2023 Jun 22;9(7):1400-1408. doi: 10.1021/acscentsci.3c00365. eCollection 2023 Jul 26. ACS Cent Sci. 2023. PMID: 37521794 Free PMC article.
-
Toxoplasmosis and Polygenic Disease Susceptibility Genes: Extensive Toxoplasma gondii Host/Pathogen Interactome Enrichment in Nine Psychiatric or Neurological Disorders.J Pathog. 2013;2013:965046. doi: 10.1155/2013/965046. Epub 2013 Mar 4. J Pathog. 2013. PMID: 23533776 Free PMC article.
References
-
- Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, Cameron D, Dowsett M, Barrios CH, Steger G, Huang CS, Andersson M, Inbar M, Lichinitser M, Lang I, Nitz U, Iwata H, Thomssen C, Lohrisch C, Suter TM, Ruschoff J, Suto T, Greatorex V, Ward C, Straehle C, McFadden E, Dolci MS, Gelber RD. N Engl J Med. 2005;353:1659–1672. - PubMed
-
- Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E. N Engl J Med. 2004;351:337–345. - PubMed
-
- Hainsworth JD, Burris HA, 3rd, Morrissey LH, Litchy S, Scullin DC, Jr, Bearden JD, 3rd, Richards P, Greco FA. Blood. 2000;95:3052–3056. - PubMed
-
- Wendtner CM, Ritgen M, Schweighofer CD, Fingerle-Rowson G, Campe H, Jager G, Eichhorst B, Busch R, Diem H, Engert A, Stilgenbauer S, Dohner H, Kneba M, Emmerich B, Hallek M. Leukemia. 2004;18:1093–1101. - PubMed
-
- Kreitman RJ, Pastan I. Curr Drug Targets. 2006;7:1301–1311. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources