Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Oct;259(4 Pt 1):C693-6.
doi: 10.1152/ajpcell.1990.259.4.C693.

AVP stimulates adenylyl cyclase and phospholipase C in reciprocal fashion in cultured RIMCT cells

Affiliations

AVP stimulates adenylyl cyclase and phospholipase C in reciprocal fashion in cultured RIMCT cells

I Teitelbaum et al. Am J Physiol. 1990 Oct.

Abstract

In cultured rat inner medullary collecting tubule (RIMCT) cells, arginine vasopressin (AVP) stimulates adenylyl cyclase (AC) activity in dose-dependent fashion, with no response at concentrations of 10(-10) M or below and with peak activity at 10(-7) M AVP. In contrast, AVP-stimulated phospholipase (PLC) activity is greatest at concentrations at which there is no effect on AC and decreases at higher concentrations of AVP, becoming undetectable at 10(-7) M. Increasing cellular adenosine 3',5'-cyclic monophosphate (cAMP) content with either exogenous ClPheScAMP or forskolin eliminates inositol trisphosphate production in response to 10(-13) M AVP. Conversely, inhibition of AC by 2',5'-dideoxyadenosine (DDA) unmasks PLC activity in response to 10(-7) M AVP that is not observed in the absence of DDA. Similarly, DDA prevents inhibition of epidermal growth factor-stimulated PLC by AVP. These findings demonstrate the reciprocal relationship between AVP-stimulated AC and PLC activities in cultured RIMCT cells, which may explain previous divergent results regarding the ability of AVP to stimulate PLC in this tissue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources