Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May;136(1):1-10.
doi: 10.1111/j.1365-2567.2011.03551.x.

Foxp3(+) regulatory T cells, immune stimulation and host defence against infection

Affiliations
Review

Foxp3(+) regulatory T cells, immune stimulation and host defence against infection

Jared H Rowe et al. Immunology. 2012 May.

Abstract

The immune system is intricately regulated allowing potent effectors to expand and become rapidly mobilized after infection, while simultaneously silencing potentially detrimental responses that averts immune-mediated damage to host tissues. This relies in large part on the delicate interplay between immune suppressive regulatory CD4(+) T (Treg) cells and immune effectors that without active suppression by Treg cells cause systemic and organ-specific autoimmunity. Although these beneficial roles have been classically described as counterbalanced by impaired host defence against infection, newfound protective roles for Treg cells against specific viral pathogens (e.g. herpes simplex virus 2, lymphocytic choriomeningitis virus, West Nile virus) have been uncovered using transgenic mice that allow in vivo Treg-cell ablation based on Foxp3 expression. In turn, Foxp3(+) Treg cells also provide protection against some parasitic (Plasmodium sp., Toxoplasma gondii) and fungal (Candida albicans) pathogens. By contrast, for bacterial and mycobacterial infections (e.g. Listeria monocytogenes, Salmonella enterica, Mycobacterium tuberculosis), experimental manipulation of Foxp3(+) cells continues to indicate detrimental roles for Treg cells in host defence. This variance is probably related to functional plasticity in Treg cell suppression that shifts discordantly following infection with different types of pathogens. Furthermore, the efficiency whereby Treg cells silence immune activation coupled with the plasticity in Foxp3(+) cell activity suggest that overriding Treg-mediated suppression represents a prerequisite 'signal zero' that together with other stimulation signals [T-cell receptor (signal 1), co-stimulation (signal 2), inflammatory cytokines (signal 3)] are essential for T-cell activation in vivo. Herein, the importance of Foxp3(+) Treg cells in host defence against infection, and the significance of infection-induced shifts in Treg-cell suppression are summarized.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Model whereby overriding Foxp3+ regulatory T (Treg) cell-mediated immune suppression represents a prerequisite ‘signal zero’ for effector T (Teff) cell activation in vivo. During immune homeostasis, Treg cells actively suppress effector cell activation. Following immune stimulation, Treg-cell suppression is blunted allowing effector T-cell activation through previously described cell intrinsic stimulation signals [T-cell receptor (signal 1), co-stimulation (signal 2), inflammatory cytokines (signal 3)].

References

    1. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62. - PubMed
    1. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64. - PubMed
    1. Suri-Payer E, Amar AZ, Thornton AM, Shevach EM. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J Immunol. 1998;160:1212–8. - PubMed
    1. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol. 2003;4:330–6. - PubMed
    1. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science (New York, NY) 2003;299:1057–61. - PubMed

Publication types

Substances