Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;100(3):571-7.
doi: 10.1002/jbm.a.33236. Epub 2011 Dec 30.

Acid-insoluble human dentin as carrier material for recombinant human BMP-2

Affiliations

Acid-insoluble human dentin as carrier material for recombinant human BMP-2

Masaru Murata et al. J Biomed Mater Res A. 2012 Mar.

Abstract

The aim of this study is to estimate the increase of bone-inductive potency by human demineralized dentin matrix (DDM) with recombinant human bone morphogenetic protein-2 (BMP-2). Human teeth were crushed, completely demineralized in 0.6M HCl, and freeze-dried. The tooth-derived material is called DDM. The shape of DDM was a particle type and its size varied from 0.4 to 0.8 mm. The BMP-2 dose-dependent study in the rat subcutaneous tissues demonstrated that the volume of induced bone and marrow increased at a dose-dependent manner. The time-course study of bone induction by the BMP-2 (5.0 μg)/DDM (70 mg) was estimated histologically and biochemically. Histological findings showed that the BMP-2/DDM increased bone and marrow sequentially between the DDM particles. Calcium content in the BMP-2/DDM-induced tissue was compatible to the histological findings. ALP activity in the BMP-2/DDM showed a maximal value at 1 week and gradually decreased. The morphometric analysis demonstrated that the BMP-2/DDM showed 66.9%, 79.0% in the volume of bone and marrow, and 32.4%, 21.0% in that of DDM at 8, 32 weeks, respectively. We confirmed that BMP-2 significantly accelerated bone formation in the acid-insoluble human-dentin carriers. These results indicate that human DDM should be an effective carrier for delivering BMP-2 and superior scaffold for bone-forming cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources