Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011;6(12):e29650.
doi: 10.1371/journal.pone.0029650. Epub 2011 Dec 27.

Further support to the uncoupling-to-survive theory: the genetic variation of human UCP genes is associated with longevity

Affiliations

Further support to the uncoupling-to-survive theory: the genetic variation of human UCP genes is associated with longevity

Giuseppina Rose et al. PLoS One. 2011.

Abstract

In humans Uncoupling Proteins (UCPs) are a group of five mitochondrial inner membrane transporters with variable tissue expression, which seem to function as regulators of energy homeostasis and antioxidants. In particular, these proteins uncouple respiration from ATP production, allowing stored energy to be released as heat. Data from experimental models have previously suggested that UCPs may play an important role on aging rate and lifespan. We analyzed the genetic variability of human UCPs in cohorts of subjects ranging between 64 and 105 years of age (for a total of 598 subjects), to determine whether specific UCP variability affects human longevity. Indeed, we found that the genetic variability of UCP2, UCP3 and UCP4 do affect the individual's chances of surviving up to a very old age. This confirms the importance of energy storage, energy use and modulation of ROS production in the aging process. In addition, given the different localization of these UCPs (UCP2 is expressed in various tissues including brain, hearth and adipose tissue, while UCP3 is expressed in muscles and Brown Adipose Tissue and UCP4 is expressed in neuronal cells), our results may suggest that the uncoupling process plays an important role in modulating aging especially in muscular and nervous tissues, which are indeed very responsive to metabolic alterations and are very important in estimating health status and survival in the elderly.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Schematic representation of linkage disequilibrium (D' coefficient) among the four SNPs of the UCP2-UCP3 gene cluster.

References

    1. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359. - PubMed
    1. Pecqueur C, Couplan E, Bouillaud F, Ricquier D. Genetic and physiological analysis of the role of uncoupling proteins in human energy homeostasis. J Mol Med. 2001;79:48–56. - PubMed
    1. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 1997;408:39–42. - PubMed
    1. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem Biophys Res Commun. 1997;235:79–82. - PubMed
    1. Yang X, Pratley RE, Tokraks S, Tataranni PA, Permana PA. UCP5/BMCP1 transcript isoforms in human skeletal muscle: relationship of the short-insert isoform with lipid oxidation and resting metabolic rates. Mol Genet Metab. 2002;75:369–373. - PubMed

Publication types