Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 May 15;16(10):1109-18.
doi: 10.1089/ars.2011.4475. Epub 2012 Feb 15.

The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more

Affiliations
Free article
Review

The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more

Thomas Ramming et al. Antioxid Redox Signal. .
Free article

Abstract

Significance: The oxidative process of disulfide-bond formation is essential for the folding of most secretory and membrane proteins in the endoplasmic reticulum (ER). It is driven by electron relay pathways that transfer two electrons derived from the fusion of two adjacent cysteinyl side chains onto various types of chemical oxidants. The conserved, ER-resident endoplasmic oxidoreductin 1 (Ero1) sulfhydryl oxidases that reduce molecular oxygen to generate an active-site disulfide represent one of these pathways. In mammals, two family members exist, Ero1α and Ero1β.

Recent advances: The two mammalian Ero1 enzymes differ in transcriptional and post-translational regulation, tissue distribution, and catalytic turnover. A specific protein-protein interaction between either isoform and protein disulfide isomerase (PDI) facilitates the propagation of disulfides from Ero1 via PDI to nascent polypeptides, and inbuilt oxidative shutdown mechanisms in Ero1α and Ero1β prevent excessive oxidation of PDI.

Critical issues: Besides disulfide-bond generation, Ero1α also regulates calcium release from the ER and the secretion of disulfide-linked oligomers through its reversible association with the chaperone ERp44. This review explores the functional repertoire and possible redundancy of mammalian Ero1 enzymes.

Future directions: Systematic analyses of different knockout mouse models will be the most promising strategy to shed new light on unique and tissue-specific roles of Ero1α and Ero1β. Moreover, in-depth characterization of the known physical interactions of Ero1 with peroxidases and PDI family members will help broaden our functional and mechanistic understanding of Ero1 enzymes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources