Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Dec;46(12):1241-6.
doi: 10.1002/jms.2010.

Characterization of barley leaf tissue using direct and indirect desorption electrospray ionization imaging mass spectrometry

Affiliations

Characterization of barley leaf tissue using direct and indirect desorption electrospray ionization imaging mass spectrometry

Bin Li et al. J Mass Spectrom. 2011 Dec.

Abstract

Chemical profiling of barley (Hordeum vulgare) leaves was demonstrated using direct and indirect desorption electrospray ionization (DESI) imaging mass spectrometry. Direct DESI analysis of the untreated leaves was not possible despite a significant content of hydroxynitrile glucosides known to reside in the epidermis of the leaves. Instead, the epidermis was stripped off the leaves, thus allowing direct DESI imaging to be performed on the back of the epidermis. Furthermore, indirect DESI imaging was performed by making imprints in porous Teflon of the intact leaves as well as of the stripped epidermis. The DESI images reveal accumulation of hydroxynitrile glucosides in the leaf epidermis, homogeneously distributed throughout the surface. The indirect DESI approach enables relative quantitation, confirming variations of hydroxynitrile glucosides content in primary leaves of three different cultivars of barley seedlings. The study presents an example of how to overcome the morphological barriers from the plant surface and perform rapid and repeatable DESI imaging. In addition, a comparison is made of direct and indirect DESI imaging, contributing to the characterization of the recently developed method of indirect DESI imaging of plant material via porous Teflon imprints.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources