Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Mar;50(3-4):575-82.
doi: 10.1016/j.fct.2011.12.032. Epub 2011 Dec 30.

Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus

Affiliations

Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus

Seung-Hong Lee et al. Food Chem Toxicol. 2012 Mar.

Abstract

Recently, there has been a growing interest in alternative therapies of marine algae for diabetes. Therefore, the anti-diabetic effects of brown alga, Ecklonia cava was investigated in type 2 diabetic animal. Male C57BL/KsJ-db/db (db/db) mice were divided into control, dieckol rich extract of E. cava (AG-dieckol), or rosiglitazone (RG) groups. The blood glucose, blood glycosylated hemoglobin levels, and plasma insulin levels were significantly lower in the AG-dieckol and RG groups than in the control db/db mice group, while glucose tolerance was significantly improved in the AG-dieckol group. AG-dieckol markedly lowered plasma and hepatic lipids concentration compared to the control db/db mice group. The antioxidant enzyme activities were significantly higher in the AG-dieckol group than in the control db/db mice group, yet its TBARS level was markedly lower compared to the RG group. With regard to hepatic glucose regulating enzyme activities, glucokinase activity was enhanced in the AG-dieckol group mice, while glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities in the AG-dieckol group mice were significantly lowered than those in the control db/db mice group. These results suggest that AG-dieckol exert an anti-diabetic effect in type 2 diabetic mice by improving the glucose and lipid metabolism and antioxidant enzymes.

PubMed Disclaimer

Publication types

LinkOut - more resources