Protein-protein complexation in bioluminescence
- PMID: 22231355
- PMCID: PMC4875246
- DOI: 10.1007/s13238-011-1118-y
Protein-protein complexation in bioluminescence
Abstract
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca(2+)-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of Xray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Similar articles
-
Transient-state kinetic analysis of complex formation between photoprotein clytin and GFP from jellyfish Clytia gregaria.FEBS Lett. 2016 Feb;590(3):307-16. doi: 10.1002/1873-3468.12052. Epub 2016 Jan 25. FEBS Lett. 2016. PMID: 26867648
-
Green-fluorescent protein from the bioluminescent jellyfish Clytia gregaria is an obligate dimer and does not form a stable complex with the Ca(2+)-discharged photoprotein clytin.Biochemistry. 2011 May 24;50(20):4232-41. doi: 10.1021/bi101671p. Epub 2011 Apr 27. Biochemistry. 2011. PMID: 21425831
-
NMR-derived topology of a GFP-photoprotein energy transfer complex.J Biol Chem. 2010 Dec 24;285(52):40891-900. doi: 10.1074/jbc.M110.133843. Epub 2010 Oct 6. J Biol Chem. 2010. PMID: 20926380 Free PMC article.
-
Perspectives on Bioluminescence Mechanisms.Photochem Photobiol. 2017 Mar;93(2):389-404. doi: 10.1111/php.12650. Epub 2016 Dec 3. Photochem Photobiol. 2017. PMID: 27748947 Review.
-
Coelenterazine-dependent luciferases.Biochemistry (Mosc). 2015 Jun;80(6):714-32. doi: 10.1134/S0006297915060073. Biochemistry (Mosc). 2015. PMID: 26531017 Review.
Cited by
-
Seeing (and Using) the Light: Recent Developments in Bioluminescence Technology.Cell Chem Biol. 2020 Aug 20;27(8):904-920. doi: 10.1016/j.chembiol.2020.07.022. Epub 2020 Aug 13. Cell Chem Biol. 2020. PMID: 32795417 Free PMC article. Review.
-
Molecular Mechanisms of Bacterial Bioluminescence.Comput Struct Biotechnol J. 2018 Nov 15;16:551-564. doi: 10.1016/j.csbj.2018.11.003. eCollection 2018. Comput Struct Biotechnol J. 2018. PMID: 30546856 Free PMC article. Review.
-
Illuminating the mechanism and allosteric behavior of NanoLuc luciferase.Nat Commun. 2023 Nov 29;14(1):7864. doi: 10.1038/s41467-023-43403-y. Nat Commun. 2023. PMID: 38030625 Free PMC article.
-
Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET.Nat Commun. 2016 Jul 11;7:12178. doi: 10.1038/ncomms12178. Nat Commun. 2016. PMID: 27397672 Free PMC article.
-
An endogenous green fluorescent protein-photoprotein pair in Clytia hemisphaerica eggs shows co-targeting to mitochondria and efficient bioluminescence energy transfer.Open Biol. 2014 Apr 9;4(4):130206. doi: 10.1098/rsob.130206. Open Biol. 2014. PMID: 24718596 Free PMC article.
References
-
- Anderson J.M., Charbonneau H., Cormier M.J. Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry. 1974;13:1195–1200. - PubMed
-
- Anderson J.M., Cormier M.J. Lumisomes, the cellular site of bioluminescence in coelenterates. J Biol Chem. 1973;248:2937–2943. - PubMed
-
- Arnold K., Bordoli L., Kopp J., Schwede T. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. - PubMed
-
- Baldwin T.O., Treat M.L., Daubner S.C. Cloning and expression of the luxY gene from Vibrio fischeri strain Y-1 in Escherichia coli and complete amino acid sequence of the yellow fluorescent protein. Biochemistry. 1990;29:5509–5515. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous