Measurement of the equilibrium relative humidity for common precipitant concentrations: facilitating controlled dehydration experiments
- PMID: 22232186
- PMCID: PMC3253849
- DOI: 10.1107/S1744309111054029
Measurement of the equilibrium relative humidity for common precipitant concentrations: facilitating controlled dehydration experiments
Abstract
The dehydration of crystals of macromolecules has long been known to have the potential to increase their diffraction quality. A number of methods exist to change the relative humidity that surrounds crystals, but for reproducible results, with complete characterization of the changes induced, a precise humidity-control device coupled with an X-ray source is required. The first step in these experiments is to define the relative humidity in equilibrium with the mother liquor of the system under study; this can often be quite time-consuming. In order to reduce the time spent on this stage of the experiment, the equilibrium relative humidity for a range of concentrations of the most commonly used precipitants has been measured. The relationship between the precipitant solution and equilibrium relative humidity is explained by Raoult's law for the equilibrium vapour pressure of water above a solution. The results also have implications for the choice of cryoprotectant and solutions used to dehydrate crystals. For the most commonly used precipitants (10-30% PEG 2000-8000), the starting point will be a relative humidity of 99.5%.
© 2012 International Union of Crystallography. All rights reserved.
Figures



Similar articles
-
Raoult's law revisited: accurately predicting equilibrium relative humidity points for humidity control experiments.J Appl Crystallogr. 2017 Mar 29;50(Pt 2):631-638. doi: 10.1107/S1600576717003636. eCollection 2017 Apr 1. J Appl Crystallogr. 2017. PMID: 28381983 Free PMC article.
-
Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F(1)-ATPase by controlled dehydration.Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):991-5. doi: 10.1107/S0907444906020877. Epub 2006 Aug 19. Acta Crystallogr D Biol Crystallogr. 2006. PMID: 16929099
-
Crystal Dehydration in Membrane Protein Crystallography.Adv Exp Med Biol. 2016;922:73-89. doi: 10.1007/978-3-319-35072-1_6. Adv Exp Med Biol. 2016. PMID: 27553236 Free PMC article.
-
Post-crystallization treatments for improving diffraction quality of protein crystals.Acta Crystallogr D Biol Crystallogr. 2005 Sep;61(Pt 9):1173-80. doi: 10.1107/S0907444905019451. Epub 2005 Aug 16. Acta Crystallogr D Biol Crystallogr. 2005. PMID: 16131749 Review.
-
Practical macromolecular cryocrystallography.Acta Crystallogr F Struct Biol Commun. 2015 Jun;71(Pt 6):622-42. doi: 10.1107/S2053230X15008304. Epub 2015 May 27. Acta Crystallogr F Struct Biol Commun. 2015. PMID: 26057787 Free PMC article. Review.
Cited by
-
Protein crystallization and initial neutron diffraction studies of the photosystem II subunit PsbO.Acta Crystallogr F Struct Biol Commun. 2017 Sep 1;73(Pt 9):525-531. doi: 10.1107/S2053230X17012171. Epub 2017 Aug 31. Acta Crystallogr F Struct Biol Commun. 2017. PMID: 28876232 Free PMC article.
-
A drug-discovery-oriented non-invasive protocol for protein crystal cryoprotection by dehydration, with application for crystallization screening.J Appl Crystallogr. 2022 Apr 2;55(Pt 2):370-379. doi: 10.1107/S1600576722002382. eCollection 2022 Apr 1. J Appl Crystallogr. 2022. PMID: 35497658 Free PMC article.
-
Measurement of the intrinsic variability within protein crystals: implications for sample-evaluation and data-collection strategies.Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):127-32. doi: 10.1107/S2053230X13032007. Epub 2013 Dec 24. Acta Crystallogr F Struct Biol Commun. 2014. PMID: 24419635 Free PMC article.
-
Increasing the X-ray diffraction power of protein crystals by dehydration: the case of bovine serum albumin and a survey of literature data.Int J Mol Sci. 2012;13(3):3782-3800. doi: 10.3390/ijms13033782. Epub 2012 Mar 21. Int J Mol Sci. 2012. PMID: 22489183 Free PMC article.
-
The low-cost Shifter microscope stage transforms the speed and robustness of protein crystal harvesting.Acta Crystallogr D Struct Biol. 2021 Jan 1;77(Pt 1):62-74. doi: 10.1107/S2059798320014114. Epub 2021 Jan 1. Acta Crystallogr D Struct Biol. 2021. PMID: 33404526 Free PMC article.
References
-
- Adachi, H., Umena, Y., Enami, I., Henmi, T., Kamiya, N. & Shen, J.-R. (2009). Biochim. Biophys. Acta, 1787, 121–128. - PubMed
-
- Arakali, S. V., Luft, J. R. & DeTitta, G. T. (1995). Acta Cryst. D51, 772–779. - PubMed
-
- Atha, D. H. & Ingham, K. C. (1981). J. Biol. Chem. 256, 12108–12117. - PubMed
-
- Berthou, J., Cesbron, F. & Laurent, A. (1972). J. Mol. Biol. 71, 809–813. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources