Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2012 Feb;28(1):14-24.
doi: 10.1007/s12264-012-1057-5.

Caspase-3 activation as a bifurcation point between plasticity and cell death

Affiliations
Review

Caspase-3 activation as a bifurcation point between plasticity and cell death

Shikha Snigdha et al. Neurosci Bull. 2012 Feb.

Abstract

Death-mediating proteases such as caspases and caspase-3 in particular, have been implicated in neurodegenerative processes, aging and Alzheimer's disease. However, emerging evidence suggests that in addition to their classical role in cell death, caspases play a key role in modulating synaptic function. It is remarkable that active caspases-3, which can trigger widespread damage and degeneration, aggregates in structures as delicate as synapses and persists in neurons without causing acute cell death. Here, we evaluate this dichotomy, and discuss the hypothesis that caspase-3 may be a bifurcation point in cellular signaling, able to orient the neuronal response to stress down either pathological/apoptotic pathways or towards physiological cellular remodeling. We propose that temporal, spatial and other regulators of caspase activity are key determinants of the ultimate effect of caspase-3 activation in neurons. This concept has implications for differential roles of caspase-3 activation across the lifespan. Specifically, we propose that limited caspase-3 activation is critical for synaptic function in the healthy adult brain while chronic activation is involved in degenerative processes in the aging brain.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Du Y., Bales K.R., Dodel R.C., Hamilton-Byrd E., Horn J.W., Czilli D.L., et al. Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A. 1997;94:11657–11662. doi: 10.1073/pnas.94.21.11657. - DOI - PMC - PubMed
    1. Gillardon F., Kiprianova I., Sandkuhler J., Hossmann K.A., Spranger M. Inhibition of caspases prevents cell death of hippocampal CA1 neurons, but not impairment of hippocampal long-term potentiation following global ischemia. Neuroscience. 1999;93:1219–1222. doi: 10.1016/S0306-4522(99)00292-4. - DOI - PubMed
    1. Earnshaw W.C., Samejima K., Svingen P.A., Basi G.S., Kottke T., Mesner P.W., et al. Caspase-mediated cleavage of DNA topoisomerase I at unconventional sites during apoptosis. J Biol Chem. 1999;274:4335–4340. doi: 10.1074/jbc.274.7.4335. - DOI - PubMed
    1. Nicholson D.W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6:1028–1042. doi: 10.1038/sj.cdd.4400598. - DOI - PubMed
    1. Fischer U., Janicke R.U., Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 2003;10:76–100. doi: 10.1038/sj.cdd.4401160. - DOI - PMC - PubMed

Publication types