Neutralization of LINGO-1 during in vitro differentiation of neural stem cells results in proliferation of immature neurons
- PMID: 22235341
- PMCID: PMC3250485
- DOI: 10.1371/journal.pone.0029771
Neutralization of LINGO-1 during in vitro differentiation of neural stem cells results in proliferation of immature neurons
Abstract
Identifying external factors that can be used to control neural stem cells division and their differentiation to neurons, astrocytes and oligodendrocytes is of high scientific and clinical interest. Here we show that the Nogo-66 receptor interacting protein LINGO-1 is a potent regulator of neural stem cell maturation to neurons. LINGO-1 is expressed by cortical neural stem cells from E14 mouse embryos and inhibition of LINGO-1 during the first days of neural stem cell differentiation results in decreased neuronal maturation. Compared to neurons in control cultures, which after 6 days of differentiation have long extending neurites, neurons in cultures treated with anti-LINGO-1 antibodies retain an immature, round phenotype with only very short processes. Furthermore, neutralization of LINGO-1 results in a threefold increase in βIII tubulin-positive cells compared to untreated control cultures. By using BrdU incorporation assays we show that the immature neurons in LINGO-1 neutralized cultures are dividing neuroblasts. In contrast to control cultures, in which no cells were double positive for βIII tubulin and BrdU, 36% of the neurons in cultures treated with anti-LINGO-1 antibodies were proliferating after three days of differentiation. TUNEL assays revealed that the amount of cells going through apoptosis during the early phase of differentiation was significantly decreased in cultures treated with anti-LINGO-1 antibodies compared to untreated control cultures. Taken together, our results demonstrate a novel role for LINGO-1 in neural stem cell differentiation to neurons and suggest a possibility to use LINGO-1 inhibitors to compensate for neuronal cell loss in the injured brain.
Conflict of interest statement
Figures
References
-
- Johe KK, Hazel TG, Muller T, Dugich-Djordjevic MM, McKay RD. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 1996;10:3129–3140. - PubMed
-
- Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36:1021–1034. - PubMed
-
- Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255:1707–1710. - PubMed
-
- Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–826. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
