Saccadic interception of a moving visual target after a spatiotemporal perturbation
- PMID: 22238081
- PMCID: PMC6621082
- DOI: 10.1523/JNEUROSCI.3896-11.2012
Saccadic interception of a moving visual target after a spatiotemporal perturbation
Abstract
Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.
Figures








Comment in
-
Updating of an occluded moving target for interceptive saccades.J Neurosci. 2012 Jun 6;32(23):7767-8. doi: 10.1523/JNEUROSCI.1193-12.2012. J Neurosci. 2012. PMID: 22674252 Free PMC article. No abstract available.
Similar articles
-
Does the Brain Extrapolate the Position of a Transient Moving Target?J Neurosci. 2015 Aug 26;35(34):11780-90. doi: 10.1523/JNEUROSCI.1212-15.2015. J Neurosci. 2015. PMID: 26311763 Free PMC article.
-
Attention governs action in the primate frontal eye field.Neuron. 2007 Nov 8;56(3):541-51. doi: 10.1016/j.neuron.2007.09.029. Neuron. 2007. PMID: 17988636 Free PMC article.
-
Predictive elements in ocular interception and tracking of a moving target by untrained cats.Exp Brain Res. 2001 Jul;139(2):233-47. doi: 10.1007/s002210100759. Exp Brain Res. 2001. PMID: 11497066
-
Synchronizing the tracking eye movements with the motion of a visual target: Basic neural processes.Prog Brain Res. 2017;236:243-268. doi: 10.1016/bs.pbr.2017.07.009. Epub 2017 Sep 19. Prog Brain Res. 2017. PMID: 29157414 Review.
-
Neural mechanisms underlying target selection with saccadic eye movements.Prog Brain Res. 2005;149:157-71. doi: 10.1016/S0079-6123(05)49012-3. Prog Brain Res. 2005. PMID: 16226583 Review.
Cited by
-
Cerebellar control of saccade dynamics: contribution of the fastigial oculomotor region.J Neurophysiol. 2015 May 1;113(9):3323-36. doi: 10.1152/jn.01021.2014. Epub 2015 Mar 4. J Neurophysiol. 2015. PMID: 25744890 Free PMC article.
-
Effect of Age, Sex, Stimulus Intensity, and Eccentricity on Saccadic Reaction Time in Eye Movement Perimetry.Transl Vis Sci Technol. 2019 Jul 30;8(4):13. doi: 10.1167/tvst.8.4.13. eCollection 2019 Jul. Transl Vis Sci Technol. 2019. PMID: 31388465 Free PMC article.
-
Orienting Gaze Toward a Visual Target: Neurophysiological Synthesis with Epistemological Considerations.Vision (Basel). 2025 Jan 14;9(1):6. doi: 10.3390/vision9010006. Vision (Basel). 2025. PMID: 39846622 Free PMC article. Review.
-
Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus.J Neurophysiol. 2013 Apr;109(8):2029-43. doi: 10.1152/jn.01032.2012. Epub 2013 Jan 30. J Neurophysiol. 2013. PMID: 23365185 Free PMC article.
-
Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement.J Vis. 2014 Jan 14;14(1):12. doi: 10.1167/14.1.12. J Vis. 2014. PMID: 24424378 Free PMC article.
References
-
- Arbib MA, Lara R. A neural model of the interaction of tectal columns in prey-catching behavior. Biol Cybern. 1982;44:185–196. - PubMed
-
- Barborica A, Ferrera VP. Estimating invisible target speed from neuronal activity in monkey frontal eye field. Nat Neurosci. 2003;6:66–74. - PubMed
-
- Barmack NH. Modifications of eye movements by instantaneous changes in the velocity of visual targets. Vision Res. 1970;10:1431–1441. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources